• 제목/요약/키워드: Hydrothermal carbonization

검색결과 33건 처리시간 0.021초

수열탄화를 이용한 하수 슬러지의 고형연료화 및 에너지 회수 효율 (Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery)

  • 김대기;이관용;박기영
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, Korea's municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery, which is conducted at temperatures ranging from 200 to $350^{\circ}C$ with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately $200^{\circ}C$.

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

Torrefaction and Hydrothermal Carbonization (HTC) of Dead Leaves

  • Saqib, Najam Ul;Park, Seong-Kyu;Lee, Jai-Young
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권5호
    • /
    • pp.45-52
    • /
    • 2014
  • Torrefaction and hydrothermal carbonization (HTC) are productive methods to reclaim energy from lignocellulosic biomass. The hydrophobic, homogenized, energy dense and carbon rich solid fuel can be obtain from torrefaction and hydrothermal carbonization. Dead leaves were carbonized in a stainless steel reactor of volume 200 ml with torrefaction ($250-270^{\circ}C$) for 120 minutes and hydrothermal carbonization ($200-250^{\circ}C$) for 30 minutes, with mass yield solid fuel ranging from 57-70% and energy content from 16.81MJ/kg to 22.01 MJ/kg compare to the biomass. The char produced from torrefaction process possess high energy content than hydrothermal carbonization. The highest energy yield of 89.96% was obtained by torrefaction at $250^{\circ}C$. The energy densification ratio fluctuated in between 1.15 to 1.30. On the basis of pore size distribution of the chars, the definition of the International Union of Pure and Applied Chemistry (IUPAC) was used as a classification standard. The pore diameter was ranging within 11.09-19 nm which play important role in water holding capacity in soil. Larger pores can hold water and provide passage for small pores. Therefore, it can be concluded that high pore size char can be obtained my HTC process and high energy content char of 22.01 MJ/Kg with 34.04% increase in energy can be obtain by torrefaction process.

하수슬러지의 수열탄화를 통한 고형연료 탄화 특성 (Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge)

  • 한성국;김문일
    • 유기물자원화
    • /
    • 제31권2호
    • /
    • pp.53-61
    • /
    • 2023
  • 하수슬러지의 대부분은 생물학적 처리에 의한 미생물에 의해 분해 가능한 유기물질을 다량 함유하고 있는 유기성 폐기물이다. 기존의 하수슬러지 처리방법으로는 건조, 소각, 반탄화 그리고 탄화 등의 기술을 이용하여 감량화 및 연료화를 진행하고 있다. 그러나, 건조를 기반으로 하여 539kcal/kg의 잠열이 소비됨으로 에너지 소비가 높은 단점이 지적되고 있다. 따라서 본 연구에서는 열화학적 처리인 수열탄화(HTC)를 통해 고형연료를 생산하고자 한다. 고형연료의 가치를 평가하기 위하여 탄화도 및 연료비의 특성을 분석하였다. 그 결과 수열탄화 반응온도가 증가할수록 탄화도의 상승으로 저위발열량도 약 500kcal/kg 상승하였다. H/C, O/C, Ratio는 1.78, 0.46에서 1.57, 0.32로 감소하는 경향을 보였다. 건조슬러지의 가연분(고정탄소+휘발분) 대비 회분(Ash)의 비율이 0.25 이상으로 나타날 경우는 수열탄화를 진행하여도 탄화도 및 발열량의 증가되지 않는다는 것을 도출하였다.

열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발 (Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권3호
    • /
    • pp.213-225
    • /
    • 2021
  • 본 논문에서는 열수 탄화(hydrothermal carbonization)에 의해 제조된 리그닌 하이드로차의 탄화 특성을 조사하였고, 근적외선 분광법과 부분 최소 제곱(partial least squares) 회귀를 이용하여 탄화 거동을 예측하기 위한 모델을 수립하였다. 온도 200℃에서 열수 탄화된 리그닌의 탄소 함량은 무처리 시료 보다 약 3 wt% 높았으며 가열 시간이 증가할수록 탄소 함량도 서서히 증가하는 경향이 나타났다. 열수 탄화는 리그닌을 더욱 탄소 집약적으로 변화시키고 마이크로 파티클을 제거하여 더욱 균질한 특성을 부여하였다. 근적외선 분광법과 부분 최소 제곱 회귀를 이용한 판별 및 예측 모델은 수열 탄화의 적용 여부를 완벽히 구분했으며 높은 정확도로 열수 탄화 리그닌의 탄소 함량을 예측하였다. 본 연구로부터 근적외선 분광법과 결합된 부분 최소 제곱 회귀 모델을 이용하여 열수 탄화에 의해 제조된 리그닌 하이드로차의 탄화 특성을 빠르고 비파괴적으로 예측할 수 있다는 것이 확인되었다.

열수가압탄화법(HTC, Hydrothermal Carbonization)에 의한 음식물 폐기물 biochar의 특성 연구 (A Study on the Characteristics of the Biochar by Hydrothermal Carbonization with Food Waste)

  • 조우리;오민아;정원덕;박성규;배선영;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권1호
    • /
    • pp.22-27
    • /
    • 2016
  • Hydrothermal carbonization (HTC) is a carbonization method of thermochemical process at a relatively low temperature (180-250℃). It is reacted by water containing raw material. In this study, it was selected for effective disposal method of food waste because food waste in Korea has large amount water. 5 kg, 10 kg, 15 kg of food waste were reacted for 6 hours at 200℃ for selecting the optimum amount of raw material. Since the derived optimum amount, food waste was reacted for 2 hours, 4 hours and 6 hours at 200℃ and 1.5 MPa. After carbonization, it was analyzed to evaluated the properties by ultimate analysis, iodine adsorption, BET surface area and SEM. After analyzing the characteristics, it can be utilized as a basic data for applied.

우분의 고형연료화를 위한 수열탄화 특성 평가 (Evaluation of Hydrothermal Carbonization Characteristics for Solid Fuel Conversion of Cow Manure)

  • 한성국;김문일
    • 유기물자원화
    • /
    • 제31권2호
    • /
    • pp.45-52
    • /
    • 2023
  • 가축분뇨는 2020년 기준 139,753톤/일 발생하였다. 가축분뇨의 대부분은 퇴비(75.3%)와 술(11.7%)로 이루어지며 농지에 살포된다. 이러한 많은 가축분뇨의 퇴·액비는 수질오염을 일으키는 주요 원인이 된다. 따라서 가축분뇨를 자원화에서 에너지화로의 전환이 필요하다. 본 연구에서는 이러한 이유로 수열 탄화 기술을 적용하여 물리적, 화학적 특성을 평가하여 우분의 고형연료에 대한 특성을 평가하였다. 가축분뇨 중 우분을 사용하였으며, 수열탄화를 통해 원료 3,101 kcal/kg의 LHV(Kcal/kg)가 220℃ 이상에서 약 3,800 kcal/kg 이상으로 상승함을 확인하였다. 이 결과는 O/C와 H/C 비율이 감소하는 뚜렷한 경향을 통해 탄화의 영향을 받은 것으로 판단된다. 연구 결과 우분의 수열 탄화를 통해 Bio-SRF의 가치를 평가하였으며, 염소를 제외한 나머지 항목은 모두 만족스러운 결과를 보였다.

A comparison study of extraction methods for bio-liquid via hydrothermal carbonization of food waste

  • Bang, YeJin;Choi, Minseon;Bae, Sunyoung
    • 분석과학
    • /
    • 제31권3호
    • /
    • pp.112-121
    • /
    • 2018
  • The hydrothermal carbonization method has received great attention because of the conversion process from biomass. The reaction produces various products in hydrochar, bio-liquid, and gas. Even though its yield cannot be ignored in amount, it is difficult to find research papers on bio-liquid generated from the hydrothermal carbonization reaction of biomass. In particular, the heterogeneity of feedstock composition may make the characterization of bio-liquid different and difficult. In this study, bio-liquid from the hydrothermal carbonization reaction of food wastes at $230^{\circ}C$ for 4 h was investigated. Among various products, fatty acid methyl esters were analyzed using two different extraction methods: liquid-liquid extraction and column chromatography. Different elutions with various solvents enabled us to categorize the various components. The eluents and fractions obtained from two different extraction methods were analyzed by gas chromatography with a mass spectrometer (GC/MS). The composition of the bio-liquid in each fraction was characterized, and seven fatty acid methyl esters were identified using the library installed in GC/MS device.

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권4호
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

열수가압탄화 공정에 의한 음식물폐기물로부터의 Bio Solid Reuse Fuel (Bio-SRF) 연료제조에 관한 실증연구 (A Study on the Manufacture of Bio-SRF from the Food Waste by Hydrothermal Carbonization (HTC) Process)

  • 한단비;염규인;박성규;조욱상;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.426-432
    • /
    • 2017
  • Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. it is a carbonization method of thermochemical process at a relatively low temperature ($180-250^{\circ}C$). It is reacted by water containing raw material. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, residence time, and pressure. This study investigates the influence of operating parameters on solid fuel production during HTC. Especially, when food waste was reacted for 2 hours, 4 hours, and 8 hours at $200^{\circ}C$ and 2.0-2.5 MPa, Data including heating value, proximate analysis and water content was consequently collected and analyzed. It was found that reaction temperature, residence time are the primary factors that influence the HTC process.