DOI QR코드

DOI QR Code

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy

열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발

  • HWANG, Un Taek (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • BAE, Junsoo (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • LEE, Taekyeong (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • HWANG, Sung-Yun (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • KIM, Jong-Chan (Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • PARK, Jinseok (Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University) ;
  • CHOI, In-Gyu (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • KWAK, Hyo Won (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • HWANG, Sung-Wook (Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • YEO, Hwanmyeong (Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2021.03.10
  • Accepted : 2021.03.31
  • Published : 2021.05.25

Abstract

In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

본 논문에서는 열수 탄화(hydrothermal carbonization)에 의해 제조된 리그닌 하이드로차의 탄화 특성을 조사하였고, 근적외선 분광법과 부분 최소 제곱(partial least squares) 회귀를 이용하여 탄화 거동을 예측하기 위한 모델을 수립하였다. 온도 200℃에서 열수 탄화된 리그닌의 탄소 함량은 무처리 시료 보다 약 3 wt% 높았으며 가열 시간이 증가할수록 탄소 함량도 서서히 증가하는 경향이 나타났다. 열수 탄화는 리그닌을 더욱 탄소 집약적으로 변화시키고 마이크로 파티클을 제거하여 더욱 균질한 특성을 부여하였다. 근적외선 분광법과 부분 최소 제곱 회귀를 이용한 판별 및 예측 모델은 수열 탄화의 적용 여부를 완벽히 구분했으며 높은 정확도로 열수 탄화 리그닌의 탄소 함량을 예측하였다. 본 연구로부터 근적외선 분광법과 결합된 부분 최소 제곱 회귀 모델을 이용하여 열수 탄화에 의해 제조된 리그닌 하이드로차의 탄화 특성을 빠르고 비파괴적으로 예측할 수 있다는 것이 확인되었다.

Keywords

Acknowledgement

This study was supported by the R&D Program for Forest Science Technology (Project No. 2020215D10-2122-AC01) provided by Korea Forest Service and the BK21 FOUR (Fostering Outstanding Universities for Research) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF)

References

  1. Agrawal, A., Kaushik, N., Biswas, S. 2014. Derivatives and applications of lignin-an insight. The SciTech Journal 1(7): 30-36.
  2. Cahyono, T.D., Darmawan, W., Priadi, T., Iswanto, A.H. 2020. Flexural Properties of Heat-Treatment Samama (Anthocephalus macrophyllus) Wood Impregnated by Boron and Methyl Metacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85. https://doi.org/10.5658/WOOD.2020.48.1.76
  3. Hoekman, S.K., Broch, A., Robbins, C., 2011. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuels 25: 1802-1810. https://doi.org/10.1021/ef101745n
  4. Hwang, H., Choi, J.W. 2018. Preparation of nanoporous activated carbon with sulfuric acid lignin and its application as a biosorbent. Journal of the Korean Wood Science and Technology 46(1): 17-28. https://doi.org/10.5658/WOOD.2018.46.1.17
  5. Hwang, S.W., Horikawa, Y., Lee, W.H., Sugiyama, J. 2016. Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science 62(2): 156-167. https://doi.org/10.1007/s10086-016-1540-0
  6. Ju, Y.M., Lee, H.W., Kim, A.R., Jeong, H., Chae, K.S., Lee, J., Ahn, B.J., Lee, S.M. 2020. Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. https://doi.org/10.5658/WOOD.2020.48.2.181
  7. Kang, S., Li, X., Fan, J., Chang, J. 2012. Solid fuel production by hydrothermal carbonization of black liquor. Bioresource Technology 110: 715-718. https://doi.org/10.1016/j.biortech.2012.01.093
  8. Kim, A.R., Kim, N.H. 2019. Effect of Heat Treatment and Particle Size on the Crystalline Properties of Wood Cellulose. Journal of the Korean Wood Science and Technology 47(3): 299-310. https://doi.org/10.5658/WOOD.2019.47.3.299
  9. Kim, K.H., Kim, J.Y., Kim, C.S., Choi, J.W. 2019. Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana. Journal of the Korean Wood Science and Technology 47(4): 442-450. https://doi.org/10.5658/wood.2019.47.4.442
  10. Kim, K.H., Moon, S.J., Kim, T.S., Lee, S.M., Yeo, H., Choi, I.G., Choi, J.W. 2011. Characterization of pyrolytic lignin in biooil produced with Yellow poplar (Liriodendron tulipifera). Journal of the Korean Wood Science and Technology 39(1): 86-94. https://doi.org/10.5658/WOOD.2011.39.1.86
  11. Kumar, S., Mohanty, A.K., Erickson, L., Misra, M. 2009. Lignin and its applications with polymers. Journal of Biobased Materials and Bioenergy 3(1): 1-24. https://doi.org/10.1166/jbmb.2009.1001
  12. Lee, H.W., Jeong, H., Ju, Y.M., Youe, W.J., Lee, J., Lee, S.M. 2019. Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes. Journal of the Korean Wood Science and Technology 47(4): 486-497. https://doi.org/10.5658/wood.2019.47.4.486
  13. Luo, H., Abu-Omar, M.M. 2017. Chemicals from lignin. Encyclopedia of Sustainable Technologies. Elsevier, Amsterdam, pp. 573-585.
  14. Lynam, J.G., Coronella, C.J., Yan, W., Reza, M.T., Vasquez, V.R., 2011. Acetic acid and lithium chloride effects on hydrothermal carbonization of lignocellulosic biomass. Bioresource Technology 102: 6192-6199. https://doi.org/10.1016/j.biortech.2011.02.035
  15. Oh, S., Ahn, S.H., Choi, J.W. 2019. Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil. Journal of the Korean Wood Science and Technology 47(3): 344-359. https://doi.org/10.5658/WOOD.2019.47.3.344
  16. Park, S.Y., Kim, J.C., Kim, J.H., Yang, S.Y., Kwon, O., Yeo, H., Cho, K.C., Choi, I.G. 2017. Possibility of wood classification in Korean softwood species using near-infrared spectroscopy based on their chemical compositions. Journal of the Korean Wood Science and Technology 45(2): 202-212. https://doi.org/10.5658/WOOD.2017.45.2.202
  17. Park, S.Y., Choi, J.H., Cho, S.M., Choi, J.W., Choi, I.G. 2020. Structural Analysis of Open-Column Fractionation of Peracetic Acid-Treated Kraft Lignin. Journal of the Korean Wood Science and Technology 48(6): 769-779. https://doi.org/10.5658/wood.2020.48.6.769
  18. Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843. doi:10.1126/science.1246843.
  19. Ruyter, H.P. 1982. Coalification model. Fuel 61: 1182-1187. https://doi.org/10.1016/0016-2361(82)90017-5
  20. Savitzky, A., Golay, M.J. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36(8): 1627-1639. https://doi.org/10.1021/ac60214a047
  21. Schwanninger, M., Rodrigues, J.C., Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood components. Journal of Near Infrared Spectroscopy 19(5): 287-308. https://doi.org/10.1255/jnirs.955
  22. Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological) 36(2): 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
  23. Sugimoto, Y., Miki, Y. 1997. Chemical structure of artificial coals obtained from cellulose, wood and peat. In: Ziegler, A., van Heek, K.H., Klein, J. Wanzl, W. Eds. Proceedings of the 9th International Conference on Coal Science (ICCS '97), pp. 187-190.
  24. Titirici, M.M., Thomas, A., Antonietti, M. 2007. Back in the black: hydrothermal carbonization of plant material as an effcient chemical process to treat the CO2 problem? New Journal of Chemistry 31: 787-789. https://doi.org/10.1039/b616045j
  25. Wang, M.X., Wang, C.Y., Li, T.Q., Hu, Z.J. 2008. Preparation of mesophase-pitch-based carbon foams at low pressures. Carbon 46(1): 84-91. https://doi.org/10.1016/j.carbon.2007.10.038
  26. Yang, S.M, Lee, H.J., Kang, S.G. 2020. Analysis of Heat Transfer Characteristics by Materials in Closed Conditions Using Acrylic Hemisphere (I): Comparison of Interior Finishing Materials. Journal of the Korean Wood Science and Technology 48(2): 217-230. https://doi.org/10.5658/WOOD.2020.48.2.217
  27. Yang, S.Y., Park, Y., Chung, H., Kim, H., Park, S.Y., Choi, I.G., Kwon, O., Cho, K.C., Yeo, H. 2017. Partial least squares analysis on near-infrared absorbance spectra by air-dried specific gravity of major domestic softwood species. Journal of the Korean Wood Science and Technology 45(4): 399-408. https://doi.org/10.5658/WOOD.2017.45.4.399
  28. Yeon, S., Park, S.Y., Kim, J.H., Kim J.C., Yang, S.Y., Yeo, H, Kwon, O., Choi, I.G. 2019. Effect of Organic Solvent Extractives on Korean Softwoods Classification Using Near-infrared Spectroscopy. Journal of the Korean Wood Science and Technology 47(4): 509-518. https://doi.org/10.5658/wood.2019.47.4.509