• 제목/요약/키워드: Hydrophobic Coating

검색결과 204건 처리시간 0.025초

Preparation and Characterization of PP-g-Poloxamer Membranes by UV Irradiation Methods and their Solutes Permeation Behaviors

  • Lee, S. H.;Shim, J. K.;Lee, Y. M.;Ahn, S. H.;Yoo, I. K.;Baek, K. H.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.97-98
    • /
    • 1998
  • 1. Introduction : Polypropylene(PP) membrane is widely used in the field of microfiltration and ultrafiltration. However, the hydrophobicity of PP causes the adsorption of hydrophobic and amphoteric solutes in the feed. Surface modification techniques of membrane through the treatment of hydrophilizing agents, coating of hydrophilic compounds, UV, plasma and high energy irradiation, etc. can have a great effect on propensities to prevent the protein from staining membranes. Among them, the modification to hydophilize membrane surface using UV is very simple and effective. Recently many studies for more effective surface modification have been conducted. Iwata et al. prepared membranes by grafting polyethylene glycol diacrylate macromer(PEGDA) onto polysulfone with plasma using a glow discharge reactor which prevent the oil from staining the membrane. The primary mechanism contributing to the membranes is preventing the oil from directly contacting the surface of the membrane as the PEGDA chains dissolved into emulsion. To evaluate their feasibility for use as a anti-fouling separation membrane, we prepared hydrophilic membranes by UV irradiation method and investigated their characteristics.

  • PDF

두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조 (Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure)

  • 유리;김유진;피재환;김경자
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

선도장 컬러강판용 도료에 적용하기 위한 자가 광경화형 폴리우레탄 아크릴레이트 올리고머 합성 및 물성 (Synthesis and Properties of Self-photocuring Polyurethane Acrylate Oligomer for Color Pre-coated metal)

  • 박소영;천정미;정부영;이도혁;천제환
    • 접착 및 계면
    • /
    • 제21권1호
    • /
    • pp.14-19
    • /
    • 2020
  • 본 연구에서는 Michael addition 반응을 통해 자가 광경화형 중간체를 합성하여 이를 적용한 폴리우레탄 아크릴레이트 올리고머를 합성하였다. 합성된 중간체와 폴리우레탄 아크릴레이트 올리고 머의 분석 및 물성은 FT-IR, NMR 및 UTM을 통해 확인하였다. 중간체의 함량이 증가할수록 인장강도는 증가하고 신율은 감소하였으며 필름이 소수성을 띄어 표면에너지가 감소하는 경향을 보였다. 중간체의 함량이 40 wt%일 때 부착성, 가공성, 연필경도가 우수했으며, 내용제성은 모두 우수한 결과를 나타내었다.

In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

  • Kim, Da Hye;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • 제42권1호
    • /
    • pp.39-47
    • /
    • 2017
  • Objectives: Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods: Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results: Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions: The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

Chemical Fixation of Polyelectrolyte Multilayers on Polymer Substrates

  • Tuong, Son Duy;Lee, Hee-Kyung;Kim, Hong-Doo
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.373-378
    • /
    • 2008
  • A simple chemical fixation method for the fabrication of layer-by-layer (LbL) polyelectrolyte multilayer (PEM) has been developed to create a large area, highly uniform film for various applications. PEM of weak poly-electrolytes, i.e., polyallylamine hydrogen chloride (PAH) and poly(acrylic acid)(PAA), was assembled on polymer substrates such as poly(methyl methacrylate)(PMMA) and polycarbonate (PC). In the case of a weak polyelectrolyte, the fabricated thin film thickness of the polyelectrolyte multilayers was strongly dependent on the pH of the processing solution, which enabled the film thickness or optical properties to be controlled. On the other hand, the environmental stability for device application was poor. In this study, we utilized the chemical fixation method using glutaraldehyde (GA)-amine reaction in order to stabilize the polyelectrolyte multilayers. By simple treatment of GA on the PEM film, the inherent morphology was fixed and the adhesion and mechanical strength were improved. Both surface tension and FT-IR measurements supported the chemical cross-linking reaction. The surface property of the polyelectrolyte films was altered and converted from hydrophilic to hydrophobic by chemical modification. The possible application to antireflection coating on PMMA and PC was demonstrated.

와이어 방전가공을 이용한 상어 표피 모사 리블렛 표면 제작 (Fabrication of a Micro-riblet Shark Skin-like Surface using a WEDM Process)

  • 박영환;김태완
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.201-206
    • /
    • 2016
  • In this study, we attempt to produce a semi-elliptical riblet with a shark skin-like surface using wire electrical discharge machining (WEDM) and micro molding techniques. Our design for the production of the semi-elliptical mold includes an electrode, a winding roller, and a guide on the WEDM system. A replication mold with negative riblets is machined using WEDM, and a shark skin inspired surface with positive riblets is fabricated using a micro molding technique. For a comparison with the original shark skin, a shark skin replica is also produced using the micro molding technique directly from a shark skin template. Droplet contact angles on a flat surface, the shark skin replica, and the epoxy resin-based micro riblet shark skin-like surface are evaluated. The effect of a Teflon coating on the contact angles for the three different surfaces is also investigated. The results show the micro riblet with a shark skin-like surface has a similar contact angle as the shark skin replica, which means that the simplified riblet shark skin surface strongly influences the performance of wettability. This study confirms the effectiveness of using the WEDM method to prepare hydrophobic surfaces with diverse surface patterns.

Laser Groove 표면의 젖음 특성에 관한 연구 (Wettability Characteristics of the Laser Grooved Surfaces)

  • 장무연;김태완
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.294-299
    • /
    • 2019
  • Most previous studies on water repellent surfaces using lasers rely on the use of pico- or femtosecond lasers. However, in industrial application, these methods have the disadvantages of high cost and low efficiency. In this study, we implement a hydrophobic surface using a high-power general-purpose diode laser. We have fabricated the microsurface using laser groove processing technology, and we present the correlation of wettability characteristics with space and width. The metal material is stainless steel (SUS 304), and the groove height during laser processing is set to $30{\mu}m$ to evaluate the wettability based on the gap and width of various grooves. Results show that the contact angle of the groove-shaped surface is increased by $40^{\circ}$ or more as compared with the surface without patterning, and the contact angle in the parallel direction is greater than that in the perpendicular direction. Results from contact angle hysteresis measurement experiments show that the groove width has a greater influence on the contact angle history than does the gap between grooves. In addition, the coating reveals that the contact angle can be increased using a chemical method and that the laser grooving process can further improve the wetting properties of the surface.

나노키토산의 식품분야에서의 이용 (Application of nanochitosan in food industry: a review)

  • 유지영;고정아;박현진;김현우
    • 식품과학과 산업
    • /
    • 제53권1호
    • /
    • pp.56-68
    • /
    • 2020
  • Recently, chitosan has increased attention in commercial applications in the food industry in terms of its biocompatibility and nontoxicity. In particular, chitosan has been used as a good hosting material for producing nanoparticles due to its unique property of ionic gelation. Chitosan has disadvantages such as low solubility at physiological pH, causing the metabolism of core material in the intestine and gastric juice. To overcome these limitations, various chitosan derivatives such as carboxylated, thiolated, and acylated chitosan have been studied. This review focuses on the changes in the physicochemical properties of chitosan nanoparticles with the introduction of hydrophobic groups, the application of functional nanocapsules as coatings, and their applicability in the food sector. The physicochemical modification of chitosan is expected to be an attractive research field for the development of chitosan applications for food as well as for improving bioavailability in functional food.

고전압에 적용 가능한 대전방지 코팅제용 바인더의 합성에 관한 연구 (Study on the Synthesis of the Binder for Antistatic Coating Applicable under High Voltage)

  • 김재영;양희준;박나영;최영주;이성민;정대원
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.196-200
    • /
    • 2013
  • 고전압 하에서도 표면 저항을 유지할 수 있는 대전방지 보호필름용 코팅액의 바인더에 관하여 연구하였다. 구체적으로는 폴리에틸렌 글리콜(PEG)과 폴리프로필렌 글리콜(PPG)을 주성분으로 하는 다양한 조성의 폴리에스터계 바인더를 합성하여 전도성 고분자와의 배합을 통하여 필름을 제조한 후에 고전압 하에서의 표면 저항의 변화를 조사하였다. PEG와 PPG의 조성과 상관없이 10 V의 전압 하에서는 $10^7{\sim}10^8{\Omega}/{\square}$의 범위를 나타내었으나, 1000 V 하에서는 표면저항이 $2{\times}10^{10}{\Omega}/{\square}$ 이상으로 변화하여 대전방지 용도로는 사용할 수 없었다. 그러나 PPG의 10 mol%를 1,4-butandiol(BD)로 대체하여 합성한 폴리에스터 중에서 PEG 함량이 25 mol%인 바인더([PEG]/[PPG]/[BD] = 25.0/67.5/7.5)에서는 1000 V 하에서도 $2.8{\times}10^9{\Omega}/{\square}$을 나타내, 고전압 하에서도 대전방지용으로 사용할 수 있는 것으로 나타났다. 이결과는 BD의 소수성에 의하여 고전압 하에서도 표면 저항이 유지될 수 있다는 것을 시사하고 있다.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.