• Title/Summary/Keyword: Hydrological model

Search Result 889, Processing Time 0.037 seconds

A Study on GIS Data Development and Distributed Modeling for Hydrological Simulation of Urban Flood (도시홍수 수문모의를 위한 GIS 자료구축 및 분포형 모델링 기법 연구)

  • Kim, Seong-Joon;Park, Geun-Ae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.204-208
    • /
    • 2006
  • This study is to develop a distributed urban flood runoff model that simulates the road runoff and to test the applicability of the model by applying to Pyeongtaek city of $12.2km^2$. To generate the runoff along the runoff, agree burned DEM (Digital Elevation Model) with road networks was suggested and the proper spatial resolution of DEM was identified finer than 15 m. To test the model applicability, 32 points on the road networks were selected and the hydrographs of each point were generated. The test showed reasonable results that increase the road runoff from the high elevation roads to the low elevation roads and the road runoff considering rainwater drainage from the road also showed reasonable results.

  • PDF

Regional Hydrological Analysis using SLURP Model - Soyanggang-dam watershed - (SLURP 모형을 이용한 광역적 수문분석 - 소양강댐 유역을 대상으로 -)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Jang, Cheol-Hee;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.523-526
    • /
    • 2003
  • This study is to test the applicability of SLURP (Semi-distributed Land Use-based runoff Process) model that is a semi-distributed, continuous hydrologic model developed by Kite (1997). The Soyanggang-dam watershed ($2,694km^2$) was selected. The DEM, land-cover map, monthly NDVI from NOAA/AVHRR and daily meteorological data of 2001 were prepared. By using the parameter optimization technique, SCE-UA (Shuffled Complex Evolution-University of Arizona), the model was calibrated and the Nash-Sutcliffe efficiency was 0.73.

  • PDF

무심천 유역에 대한 지하수 함양량의 시공간적 변동성 분석

  • Jeong Il-Mun;Kim Nam-Won;Lee Jeong-U;Lee Byeong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.282-285
    • /
    • 2006
  • This study is to present the method for estimating groundwater recharge with temporal-spatial variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined for the period 2001 - 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff data at the outlet of the catchment. The results of temporal and spatial variations of recharge were presented, This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use changes.

  • PDF

Development of the daily runoff simulation model (일유출량 모의 모형의 개발)

  • Kim, Yang-Su;Seo, Byung-Ha;Kang, Kwan-Weon
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.307-313
    • /
    • 1989
  • This study is aimed to develop a long-term daily runoff simulation model. The model is theoretically constructed and is applied to the practical problems to verify its reasonableness. A lumped, nonlinear model is proposed and is calibrated as quasilinearization procedures. The hydrological data used in the paper are precipitation, runoff, and evaporation records in the Bochong Stream which is one of the tributaries of the Geum River.

  • PDF

Effects of ILFs on DRAM algorithm in SURR model uncertainty evaluation caused by interpolated rainfall using different methods

  • Nguyen, Thi Duyen;Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.137-137
    • /
    • 2022
  • Evaluating interpolated rainfall uncertainty of hydrological models caused by different interpolation methods for basins where can not fully collect rainfall data are necessary. In this study, the adaptive MCMC method under effects of ILFs was used to analyze the interpolated rainfall uncertainty of the SURR model for Gunnam basin, Korea. Three events were used to calibrate and one event was used to validate the posterior distributions of unknown parameters. In this work, the performance of four ILFs on uncertainty of interpolated rainfall was assessed. The indicators of p_factor (percentage of observed streamflow included in the uncertainty interval) and r_factor (the average width of the uncertainty interval) were used to evaluate the uncertainty of the simulated streamflow. The results showed that the uncertainty bounds illustrated the slight differences from various ILFs. The study confirmed the importance of the likelihood function selection in the application the adaptive Bayesian MCMC method to the uncertainty assessment of the SURR model caused by interpolated rainfall.

  • PDF

Application of storm water management model to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan

  • Liu, Jian;Liu, Yan;Liu, Ru;Li, Sixin;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.346-352
    • /
    • 2017
  • This study discusses application of the storm water management model (SWMM) to designing the sponge city facilities in the Athletes Village of Military World Games in Wuhan in October 2019. The SWMM was used to simulate the runoff processes and reduction efficiencies of the sponge city facilities. The runoffs of the sponge city facilities were compared with those of traditional drainage system for the design rainfall of 35.2mm and the rainfalls with different recurrence periods. The results show that the hign density sponge city facilities could meet the requirements for 80% of annual runoff control rate, SWMM can determine the scales of the sponge city facilities and effectively simulate the hydrological processes for different layout schemes. The simulation model is also helpful to making optimization of the sponge city facility layout.

  • PDF

Influence of Seasonal Forcing on Habitat Use by Bottlenose Dolphins Tursiops truncatus in the Northern Adriatic Sea

  • Bearzi, Giovanni;Azzellino, Arianna;Politi, Elena;Costa, Marina;Bastianini, Mauro
    • Ocean Science Journal
    • /
    • v.43 no.4
    • /
    • pp.175-182
    • /
    • 2008
  • Bottlenose dolphins are the only cetaceans regularly observed in the northern Adriatic Sea, but they survive at low densities and are exposed to significant threats. This study investigates some of the factors that influence habitat use by the animals in a largely homogeneous environment by combining dolphin data with hydrological and physiographical variables sampled from oceanographic ships. Surveys were conducted year-round between 2003 and 2006, totalling 3,397 km of effort. Habitat modelling based on a binary stepwise logistic regression analysis predicted between 81% and 93% of the cells where animals were present. Seven environmental covariates were important predictors: oxygen saturation, water temperature, density anomaly, gradient of density anomaly, turbidity, distance from the nearest coast and bottom depth. The model selected consistent predictors in spring and summer. However, the relationship (inverse or direct) between each predictor and dolphin presence varied among seasons, and different predictors were selected in fall. This suggests that dolphin distribution changed depending on seasonal forcing. As the study area is relatively uniform in terms of bottom topography, habitat use by the animals seems to depend on complex interactions among hydrological variables, caused primarily by seasonal change and likely to determine shifts in prey distribution.

Hydrological Evaluation of Rainwater Harvesting: 2. Hydrological Evaluation (빗물이용의 수문학적 평가: 2. 수문학적 평가)

  • Kim, Kyoungjun;Yoo, Chulsang;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.230-238
    • /
    • 2008
  • This study evaluated the economic aspect of the rainwater harvesting facilities by hydrologically analyzing the inflow, rainwater consumption, rainfall loss, tank storage, and overflow time series to derive the net rainwater consumption and the number of days of rainwater available. This study considers several rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology and Daejon World Cup Stadium and the results derived are as follows. (1) Increasing the water consumption decreases the number of days of rainwater available. (2) Due to the climate in Korea, a larger tank storage does not increase the amount and the number of days of water consumption during wet season (June to September), but a little in October. (3) Economic evaluation of the rainwater harvesting facilities considered in this study shows no net benefit (private benefit). (5) Flood reduction effect of rainwater harvesting facilities was estimated very small to be about 1% even in the case that 10% of all the basin is used as the rainwater collecting area.

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.

3D GSIS Application for Managing Flood Disaster (홍수재해관리를 위한 3차원 GSIS적용)

  • Yoo, Hwan-Hee;Kim, Uk-Nam;Kim, Seong-Sam;Chung, Dong-Ki
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.21-29
    • /
    • 2004
  • Floods are disastrous natural phenomena which result in numerous losses of life and property. It is possible to minimize the potential risk by adopting a disaster management system. Nowadays, Geo-Spatial Information System(GSIS) and computer-modelling techniques have assisted scientists and engineers with determining flood disaster assessments, GIS technologies especially have the advantage of performing spatial analysis as well as generating the model for a flood hazard. Therefore, this paper presents the flood management system based on 3D GSIS that can cope with natural disasters actively and manage flood hazard systematically by constructing the database using hydrological data, digital map, DEM, and high-resolution satellite images.

  • PDF