• Title/Summary/Keyword: Hydrologic model

Search Result 782, Processing Time 0.029 seconds

Utility of Gridded Observations for Statistical Bias-Correction of Climate Model Outputs and its Hydrologic Implication over West Central Florida (기후 모델 결과의 통계적 오차 보정과 수문 모델링 적용을 위한 격자 단위 자료의 유용성 평가)

  • Hwang, Sye-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.91-102
    • /
    • 2012
  • 강우의 관측망 확장과 위성 자료 및 기후 모델을 이용한 격자 단위자료가 개발 및 보급됨에 따라 다양한 자료의 분야별 활용성에 대한 연구의 필요성이 제기되고 있다. 본 연구에서는 지역 기후 모델 산출물의 오차 보정을 위한 격자 관측자료의 활용성을 평가하였다. 또한 통합 분포형 수문모델을 이용하여, 보정한 기후모델 결과의 수문 모의를 위한 기후 입력 자료로써의 적합성을 검토하였다. 보정된 결과는 각 관측자료의 월별 평균 강우량과 공간 분포를 비교적 잘 재현하였다. 한편 연강우량 시계열에 있어 그 양상은 잘 재현된 가운데 보정되지 않은 오차를 일부 포함하는 것으로 나타났다. 이는 점 관측자료로부터 추정된 시험 지역내 172개 소유역에 대한 일평균 강우량 자료와 비교해 볼 때 관측자료의 형식이나 정확성보다 기후모델의 불확실성에 기인하는 것으로 판단된다. 수문 모의 결과, 격자 자료를 이용하여 보정한 강우 입력자료는 수문 모델의 검보정에 이용된 소유역 단위 강우 자료를 이용한 결과에 상응하는 활용성을 보여주었다. 또한 강우의 공간 분포를 고려하지 않고, 시험유역 전체에 대한 평균 강우량을 입력 자료로 이용한 결과를 통해 기후 자료의 공간 분포와 관측 밀도의 중요성을 확인하였다.

A Study on Application of HEC-HMS Model to the Naerinchon Basin (내린천 유역의 HEC-HMS 모형 적용에 관한 연구)

  • Choi, Han-Kyu;Baek, Hyo-Sun;Jeong, Byoung-Ha
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.211-218
    • /
    • 2002
  • HEC-HMS model should be calibrated to be applied to these basins in Gangwon-do unlike the general basins. In the study, it is investigated whether the HEC-HMS model may be applied or not to Naerinchon basin where is the typical basin of Gangwon-do Additionally, the straightforword module of HEC-HMS for simulating the hydrologic characteristic of Gangwon-do basins well will be suggested by comparison of the numerical results with the observed data. The hydrologic results estimated by several modules such as Clark, SCS and Snyder methods in HEC-HMS model have been compared with the observed data for 1999~2000 storm events. It is concluded that Clark method are relatively applicable to the basins in Gangwon-do rather than the others methods. The parametric studies for HEC-HMS model should be studied further in order to apply to Gangwon-do basins more accurately.

  • PDF

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management (실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발)

  • Hwang, Man-Ha;Maeng, Sung-Jin;Ko, Ick-Hwan;Park, Jeong-In;Ryoo, So-Ra
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

An Implementation of Expression System and Model for Automatic Creation of Flooding Area in the river (하천범람 영역 자동생성 모델 및 표출 시스템 구현)

  • Choi, Eun-Hye;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.654-660
    • /
    • 2012
  • The goal of this paper is to calculate flood elevation by applying temporal distribution of rainfall through HEC-RAS(Hydrologic Engineering Center's River Analysis System) and to automatically create areas of flooding by a user-defined spatial model based on GIS using calculated values of flood elevation and detailed data of topography. Accuracy of topographic data is the most important factor because of deeply changing analysis results of flooding areas of a river. Therefore, this paper suggests a method of attributive and spatial data construction based on the GIS using UIS(Urban Information System, river-related reports, and hydrologic information. Also, we implement an expression system to provide analysis results extracted from the proposed model.

The Urban Water Cycle Planning Elements and Hydrologic Cycle Simulation for Green City (녹색도시 물순환 계획요소 및 수문순환 모의)

  • Lee, Jung-Min;Kim, Jong-Lim
    • Land and Housing Review
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 2012
  • The climate change and global warming has been a world-wide issue. Also, the green growth has been a widely adopted strategy for national and regional development. In particular, after the Kyoto Protocol to United Nations Framework Convention on Climate Change was declared, the low carbon society was inevitable phenomenon. The hydrologic cycle in urban catchment has been changed due to the expansion of impervious area by rapid urban development. This paper has examined the Water cycle planning elements for green city in the scale of urban planning as well as site planning including housing site. In this study, the SWMM5-LID (Storm Water Management Model5-LID) model was used to simulate the hydrologic cycle of the test catchment as a typical urban catchment. We performed continuous simulation on urban runoff before and after the development of the test catchment and after the installation of Green city planning Elements.

Evaluating Applicability of SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) in Hydrologic Analysis: A Case Study of Geum River and Daedong River Areas (수문인자추출에서의 SRTM DEM (Shuttle Radar Topography Mission Digital Elevation Model) 적용성 평가: 대동강 및 금강 지역 사례연구)

  • Her, Younggu;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.101-112
    • /
    • 2013
  • Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) offers opportunities to make advances in many research areas including hydrology by providing near-global scale elevation measurements at a uniform resolution. Its wide coverage and complimentary online access especially benefits researchers requiring topographic information of hard-to-access areas. However, SRTM DEM also contains inherent errors, which are subject to propagation with its manipulation into analysis outputs. Sensitivity of hydrologic analysis to the errors has not been fully understood yet. This study investigated their impact on estimation of hydrologic derivatives such as slope, stream network, and watershed boundary using Monte Carlo simulation and spatial moving average techniques. Different amount of the errors and their spatial auto-correlation structure were considered in the study. Two sub-watersheds of Geum and Deadong River areas located in South and North Korea, respectively, were selected as the study areas. The results demonstrated that the spatial presentations of stream networks and watershed boundaries and their length and area estimations could be greatly affected by the SRTM DEM errors, in particular relatively flat areas. In the Deadong River area, artifacts of the SRTM DEM created sinks even after the filling process and then closed drainage basin and short stream lines, which are not the case in the reality. These findings provided an evidence that SRTM DEM alone may not enough to accurately figure out the hydrologic feature of a watershed, suggesting need of local knowledge and complementary data.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF

Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (I) : Model Development (앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (I) : - 모형 개발 -)

  • Bae, Deg-Hyo;Lee, Byong-Ju;Georgakakos, Konstantine P.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.953-961
    • /
    • 2009
  • The objective of this study is to develop a stochastic continuous storage function model for enhancement of an event-oriented watershed and channel storage function models which have been used as an official flood forecast model in Korea. For this study, soil moisture accounting component is added to the original storage function model and each hydrologic component, such as surface flow, subsurface flow, groundwater flow and actual evaportranspiration, is simulated as a function of soil water content. And also, ensemble Kalman filtering technique is used for real-time assimilation of measured streamflow from various stream locations in the watershed. Therefore the enhanced model will be able to simulate hydrologic components for long-term period without additional estimation of model parameters and to give more accurate and reliable results than those from the existing deterministic model due to the assimilation of measured streamflow data.

Hydrologic Performance Characteristics of Small Scale Hydro Power Site (소수력발전입지의 수문학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.135-142
    • /
    • 2007
  • The model to predict flow duration characteristics and performance for small scale hydro power(SSHP) plants is studied to analyze the effects of rainfall condition. One existing SSHP plant was selected and performance characteristics was analyzed by using the developed model. The predicted results from the model developed show that the data were in good agreement with operational results of existing SSHP plant. The results show that both the scale parameter and the shape parameter have large effects on the performance of SSHP sites. And also it was found that the model developed in this study can be a useful tool to predict the performance of SSHP sites.