• Title/Summary/Keyword: Hydrogenation cycle

Search Result 15, Processing Time 0.026 seconds

Homogeneous Catalysis (VI). Hydride Route with Chloro Ligand Dissociation for the Hydrogenation of Acrylonitrile with trans-Chlorocarbonylbis(triphenylphosphine)iridium(I)

  • Moon, Chi-Jang;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.4
    • /
    • pp.180-183
    • /
    • 1983
  • The reaction of $IrClH_2(CO)(Ph_3P)_2$ ($Ph_3P$=triphenylphosphine) with acrylonitrile (AN) produces a stoichiometric amount of propionitrile (PN) at $100^{\circ}C$ under nitrogen, which suggests that the catalytic hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ proceeds through the hydride route where the formation of the dihydrido complex, $IrClH_2(CO)(Ph_3P)_2$ is the initial step. The rate of the hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ is decreased by the presence of excess $Cl^-$ in the reaction system, which suggests that $Cl^-$ is the dissociating ligand in the catalytic cycle. It has been also found that the rate of the hydrogenation increases with inercase both in hydrogen pressure and in concentration of free $Ph_3P$, and with decrease in AN concentration in the reaction system.

Deformation of the Rolled Plate with Hydrogen Absorption-Desorption Cycling (수소저장-방출싸이클링에 의한 압연판재의 변형)

  • 정영관;김경훈;정선환;김창덕;이근진;박규섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.861-864
    • /
    • 2002
  • Deformation of the specimen was investigated on hydrogen absorption-desorption cycling. In order to study this problem, the cold rolled palladium thin plate as the specimen had been used. By using the electrochemical method, the palladium plate specimen was cyclically hydrogenated in the 0.1 mol $H_2SO_4$ electrolyte. As results, it is noted that the thickness of the plate specimen gradually increased in increasing hydrogenation cycles whereas the width and the length decreased. Also, grains in the plate specimen were greatly deformed after hydrogenation cycling. But hydrogen absorption rate scarcely changed.

  • PDF

The Relation between Hydrogen Absorption-Desorption Cycling and Cold Work (수소저장-방출싸이클링과 냉간가공과의 관계)

  • 정영관;이근진;박규섭;김경훈;김세웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.829-832
    • /
    • 2002
  • Deformation of the specimens was investigated on hydrogen absorption-desorption cycling. In order to study this problem, the cold rolled and the annealed palladium thin plate as specimens had been used. By using the electrochemical method, the palladium plate specimens were cyclically hydrogenated in the 0.1mol $H_2SO_4$ electrolyte. As results, it is noted that the thickness of the plate specimens gradually increased in increasing hydrogenation cycles whereas the width and the length decreased. Also, Deformation of the cold rolled palladium specimen was lager than the annealed palladium specimen. And grains in the plate specimen were greatly deformed after hydrogenation cycling. But hydrogen absorption rate scarcely changed.

  • PDF

Material Life Cycle Assessments on Mg2NiHx-CaO Composites (Mg2NiHx-CaO 수소 저장 복합물질의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.1
    • /
    • pp.8-18
    • /
    • 2022
  • With rapid industrialization and population growth, fossil fuel use has increased, which has a significant impact on the environment. Hydrogen does not cause contamination in the energy production process, so it seems to be a solution, but it is essential to find an appropriate storage method due to its low efficiency. In this study, Mg-based alloys capable of ensuring safety and high volume and hydrogen storage density per weight was studied, and Mg2NiHx synthesized with Ni capable of improving hydrogenation kinetics. In addition, in order to improve thermal stability, a hydrogen storage composite material synthesized with CaO was synthesized to analyze the change in hydrogenation reaction. In order to analyze the changes in the metallurgical properties of the materials through the process, XRD, SEM, BET, etc. were conducted, and hydrogenation behavior was confirmed by TGA and hydrogenation kinetics analysis. In addition, in order to evaluate the impact of the process on the environment, the environmental impact was evaluated through "Material Life Cycle Assessments" based on CML 2001 and EI99' methodologies, and compared and analyzed with previous studies. As a result, the synthesis of CaO caused additional power consumption, which had a significant impact on global warming, and further research is required to improve this.

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites (Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

HYDROGEN DECREPITATION AND MAGNETIC PROPERTIES OF $Sm_{2}Fe_{17}-TYPE$ ALLOY MODIFIED WITH A SMALL ADDITION OF Nb

  • Kwon, H.W.;Harris, I.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.432-436
    • /
    • 1995
  • The hydrogen decrepitation behaviour of the $Sm_{2}Fe_{17} alloy containing 4at%Nb was examined by means of DTA and SEM metallography, and the magnetic properties of the alloy were studied by means of VSM or TMA. It has been found that a simple hydrogenation and degassing treatment for the alloy caused a poor hydrogen decrepitation. The cycle treatment consisting of repeated hydrogenation and degassing, however, caused a severe hydrogen decrepitation with a combination of intergranular and transgranular failure. The disproportionation temperature of the hydrogenated $Sm_{2}Fe_{17}-type alloy was enhanced significantly by small addition of Nb. It has also been found that the Curie temperature of $Sm_{2}Fe_{17} matrix phase in the Nb-containing alloy has been enhanced by the hydrogenation, and this was attributed to the increase in interatomic distance between the neighbouring iron atoms caused by the interstitial occupancy of the hydrogen atom into the $Sm_{2}Fe_{17}-type lattice. The magnetisation of the $Sm_{2}Fe_{17} alloy containing Nbwas found to be lower than that of the Nb-free alloy, and this was explained by the dilution effect due to the presence of the paramagnetic $Sm_{2}Fe_{17} phase.

  • PDF

Hydrogen Storage Properties of Mg Alloy Prepared by Incorporating Polyvinylidene Fluoride via Reactive Milling

  • Song, Myoung Youp;Kwak, Young Jun
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.878-884
    • /
    • 2018
  • In the present work, we selected a polymer, polyvinylidene fluoride (PVDF), as an additive to improve the hydrogenation and dehydrogenation properties of Mg. 95 wt% Mg + 5 wt% PVDF (designated Mg-5PVDF) samples were prepared via milling in hydrogen atmosphere (reactive milling), and the hydrogenation and dehydrogenation characteristics of the prepared samples were compared with those of Mg milled in hydrogen atmosphere. The dehydrogenation of magnesium hydride formed in the as-prepared Mg-5PVDF during reactive milling began at 681 K. In the fourth cycle (n=4), the initial hydrogenation rate was 0.75 wt% H/min and the quantity of hydrogen absorbed for 60 min, $H_a$ (60 min), was 3.57 wt% H at 573 K and in 12 bar $H_2$. It is believed that after reactive milling the PVDF became amorphous. The milling of Mg with the PVDF in hydrogen atmosphere is believed to have produced defects and cracks. The fabrication of defects is thought to ease nucleation. The fabrication of cracks is thought to expose fresh surfaces, resulting in an increase in the reactivity of the particles with hydrogen and a decrease in the diffusion distances of hydrogen atoms. As far as we know, this investigation is the first in which a polymer PVDF was added to Mg by reactive milling to improve the hydrogenation and dehydrogenation characteristics of Mg.

Study on the Characteristics of Hydride Heat Pump Using the Zr-based Laves Phase Alloys (Zr-based 합금을 이용한 hydride heat pump의 작동 특성에 관한 연구)

  • Lee, Soo-Geun;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1990
  • In order to improve the power of hydride heat pump, prototype heat pump was constructed using $Zr_{0.95}Ti_{0.05}Cr_{0.9}Fe_{1.1}$-$Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$ which had very good hydrogenation properties. The power changed with operating parameter such as cycle time, air flow rate, and temperature of hot air was investigated. The power shows maximum value with cycle time. The power increased with air flow rate and temperature of hot air. The power of the heat pump was $65-72 Kcal/Kg-alloy{\cdot}h$ under optimum operating condition, which was superior to that the system using $LaNi_{0.9}Al_{0.3}-MmNi_{4.15}Al_{0.66}Fe_{0.2}$ alloy pairs.

  • PDF

Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Single-Roll Melt Spinning (단롤주조법에 의한 Ti-Nb-Cr 합금의 제조와 수소화 특성 평가)

  • Kim, Kyeong-Il;Hong, Tae-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.433-439
    • /
    • 2009
  • Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. In order to solve the problem, the activation of a wide range of hysteresis of hydriding/dehydriding and without degradation of hydrogen capacity due to the hydriding/dehydriding cycle have to be improved in order to be aplied. Ti-Cr alloys have a high capacity about 0.8 wt.% in an ambient atmosphere. When the Ti-Cr alloys are added to Nb and Ta elements, they formed a laves phase in the alloy system. The Nb element was expected to make easy diffuse hydrogen in the Ti-Cr storage alloy, which was a catalytic element. In this study, the Ti-Nb-Cr ternary alloy was prepared by melt spinning. As-received specimens were characterized using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy) with EDX (Energy Dispersive X-ray) and TG/DSC (Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI (Pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423 K.

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites (수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가)

  • HAN, JEONG-HEUM;LEE, YOUNG-HWAN;YU, JAE-SEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.