Evaluation of Hydrogenation Properties on Ti-Nb-Cr Alloys by Single-Roll Melt Spinning

단롤주조법에 의한 Ti-Nb-Cr 합금의 제조와 수소화 특성 평가

  • Kim, Kyeong-Il (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials (ReSEM), Chungju National University) ;
  • Hong, Tae-Whan (Department of Materials Science and Engineering/Research Center for Sustainable ECo-Devices and Materials (ReSEM), Chungju National University)
  • 김경일 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지 변환 저장소재 및 부품개발 연구센터)
  • Received : 2009.04.14
  • Published : 2009.07.25

Abstract

Ti and Ti based hydrogen storage alloys have been thought to be the third generation of alloys with a high hydrogen capacity, which makes it difficult to handle because of high reactivity. In order to solve the problem, the activation of a wide range of hysteresis of hydriding/dehydriding and without degradation of hydrogen capacity due to the hydriding/dehydriding cycle have to be improved in order to be aplied. Ti-Cr alloys have a high capacity about 0.8 wt.% in an ambient atmosphere. When the Ti-Cr alloys are added to Nb and Ta elements, they formed a laves phase in the alloy system. The Nb element was expected to make easy diffuse hydrogen in the Ti-Cr storage alloy, which was a catalytic element. In this study, the Ti-Nb-Cr ternary alloy was prepared by melt spinning. As-received specimens were characterized using XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy) with EDX (Energy Dispersive X-ray) and TG/DSC (Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI (Pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423 K.

Keywords

Acknowledgement

Supported by : 충주대학교

References

  1. H. Y. Kwon and G. K. Kang, Introduction of Hydrogen storage alloys, p.368-373, Gold (2003)
  2. Hydrogen Energy R&D Center, Hydrogen Information 9, p.9-11, 14 (2005)
  3. Frontier Project by MOST of Korea, Hydrogen Energy, AJIN, p.247 (2004)
  4. H. S. Lee, Y. H. Lee, S. C. Gil, T. W. Hong and Y. J. Kim, Hydrogen storage alloys, Korea Institute of Science and Technology, p.8-14 (2003)
  5. G. S. Nam, Technology of Hydrogrn Energy, Korea Energy Management Corporation p.10-19 (2001)
  6. Machiada, Y., Hydride for energy source, Oxford, p.329-336 (1978)
  7. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, and A. Kamegawa, Met. Mater. Int. 7, 67 (2001) https://doi.org/10.1007/BF03026941
  8. M. Okada, T. Kuriiwa, A. Kamegawa, and H. Takamura, Mat. Sci. Eng. A 329-331, 305 (2002) https://doi.org/10.1016/S0921-5093(01)01580-5
  9. M. Okada, T. Chou, A. Kamegawa, T. Tamura, H. Takamura,A. Matsukawa, and S. Yamashita, J. Alloys Comp. 356-357,480 (2003) https://doi.org/10.1016/S0925-8388(02)01246-X
  10. Y. Shudo, T. Ebisawa, and H. Itoh, J. Alloys Comp. 356-357, 497 (2003) https://doi.org/10.1016/S0925-8388(03)00365-7
  11. Sumiaki Nakano, Sensors and Actuators B 104, 75 (2005) https://doi.org/10.1016/j.snb.2004.04.101
  12. K. Y. Shu, Y. Q. Lei, X. G. Yang, S. K. Zhang, G. L. Lu, H. Zhang, and Q. D. Whang, J. Alloys Comp. 311, 288 (2001) https://doi.org/10.1016/S0925-8388(00)01084-7
  13. Chuan-Jian Li and Xin-Lin Wang, J. Alloys Comp. 284, 274 (1999) https://doi.org/10.1016/S0925-8388(98)00824-X
  14. N. Mani and S. Ramaprabhu, Int. J. Hydrogen energy 30,53 (2005) https://doi.org/10.1016/j.ijhydene.2004.03.027
  15. Qian Li, K. C. Chou, Qin Lin, L. J. Jiang, and Feng Zhan, Int. J. Hydrogen energy 29, 843 (2004) https://doi.org/10.1016/j.ijhydene.2003.10.002
  16. A. Y. Esayed and D. O. Northwood, Int. J. Hydrogen energy 22, 77 (1997) https://doi.org/10.1016/S0360-3199(96)00076-6
  17. Adel Y. Esayed, Int. J. Hydrogen energy 25, 357 (2000) https://doi.org/10.1016/S0360-3199(99)00029-4
  18. Adel Y. Esayed, Int. J. Hydrogen energy 25, 363 (2000) https://doi.org/10.1016/S0360-3199(99)00025-7
  19. A. Y. Esayed and D.O. Northwood, Int. J. Hydrogen energy 20, 893 (1995) https://doi.org/10.1016/0360-3199(94)00116-H
  20. P. Palade, S. Saritori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, and G. Filoti, J. Alloys Comp. p.170-176 (2006) https://doi.org/10.1016/j.jallcom.2005.08.017
  21. G. Saage, S. Sartori, J. Eckert, and L. Schultz, Mat. Sci and Eng. A 375-377, 1125 (2004) https://doi.org/10.1016/j.msea.2003.10.284
  22. Shin-Ichi Yamamura, H.-Y. Kim, Hisamichi Kimura, Akihisa Inoue, and Yoshiaki Arata, J. Alloys Comp. 339, 230 (2002) https://doi.org/10.1016/S0925-8388(01)01998-3
  23. Hitosi Husi, The Principle of Thermal Analysis, Kyorisitu, p.105-172 (1990)
  24. K. Shin, S. Seok, and T. W. Hong, J. Kor. Inst. Met. & Mater. 43, 708 (2005)
  25. Y. G. Lee and T.-W. Hong, Trans. of Korean Hydrogen and New Energy Society 19, 482 (2008)