• Title/Summary/Keyword: Hydrogenation catalyst

Search Result 113, Processing Time 0.021 seconds

Catalytic Hydrogen Transfer Reduction of Aromatic Nitro Compounds with 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 방향족 니트로 화합물의 환원반응)

  • Kim, Hong-Seok;Kim, Dong Il;Kim, Cheong-Sig;Joo, Young Je
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.871-877
    • /
    • 1994
  • Most of the aromatic nitro compounds were reduced to amines in high yield by transfer of hydrogen from 4-vinyl cyclohexene to the substrate via palladium catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups such as -OH, $-OCH_3$, $-CH_3$, $-CO_2H$, and -Cl, except for halogen which is removed during hydrogenation. The reduction of ortho-substituted nitrobenzene such as o-nitrotoluene, o-nitrophenol, o-nitroanisole was slower than the para isomer. Typically, the nitro compound is refluxed in ethanol with a large exess of 4-vinylcyclohexene in the presence of Pd-C catalyst. Under the above conditions, p-nitrobenzaldehyde, p-nitrobenzyl alcohol, and p-nitrobenzyl acetate were reduced to p-toluidine.

  • PDF

Catalytic Oxidation of Toluene over Pd-Activated Alumina Catalysts at Low Temperature (활성알루미나에 담지한 팔라듐 촉매상에서 톨루엔의 저온 연소반응)

  • Lee, Ju-Yeol;Song, Hyung-Jin;Lee, Sang-Bong;Kim, Mi-Hyung;Jo, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.339-347
    • /
    • 2012
  • This study focuses on developing catalysts for the removal of toluene produced from paint booth. Toluene is one of the major VOC in painting, coating process. Pd catalysts have been used in hydrogenation oxidation and low temperature combustion reaction for toluene removal. Pd catalysts, even though it is very precious and expensive. Therefore, the prepared catalysts from minimizing the amount of Pd ratio (0.1~1.0wt%) were measured. As a result, 1.0wt% Pd(R) catalyst under all conditions showed the highest activity. These results may suggest that the catalytic activity is related to Pd dispersion according sintering atmosphere and Pd ratio in the manufacturing process through the analysis of SEM, XRD.

A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support (비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구)

  • Kim, Chul-Ung;Kim, You-Sung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Lee, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.

Confined Pt and CoFe2O4 Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity

  • Kang, Dong-Hyeon;Eum, Min-Sik;Lee, Byeong-No;Bae, Tae-Sung;Lee, Kyu-Reon;Lim, Heung-Bin;Hur, Nam-Hwi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3712-3719
    • /
    • 2011
  • Confined Pt and $CoFe_2O_4$ nanoparticles (NPs) in a mesoporous core/shell silica microsphere, Pt-$CoFe_2O_4$@meso-$SiO_2$, were prepared using a bi-functional linker molecule. A large number of Pt NPs in Pt-$CoFe_2O_4$@meso-$SiO_2$, ranging from 5 to 8 nm, are embedded into the shell and some of them are in close contact with $CoFe_2O_4$ NPs. The hydrogenation of cyclohexene over the Pt-$CoFe_2O_4$@meso-$SiO_2$ microsphere at $25^{\circ}C$ and 1 atm of $H_2$ yields cyclohexane as a major product. In addition, it gives oxygenated products. Control experiments with $^{18}O$-labelled water and acetone suggest that surface-bound oxygen atoms in $CoFe_2O_4$ are associated with the formation of the oxygenated products. This oxidation reaction is operative only if $CoFe_2O_4$ and Pt NPs are in close contact. The Pt-$CoFe_2O_4$@meso-$SiO_2$ catalyst is separated simply by a magnet, which can be re-used without affecting the catalytic efficiency.

A comparative Study on the Colorimeter and Densitometer Analysis in Color Measurement for Reproduced Colors Variable Dot Area Rates (다색 망점 인쇄물의 색측정에서 농도 측정 방법과 자극치 직독 방법의 비교에 관한 연구)

  • ChulWhoiKoo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.2 no.1
    • /
    • pp.45-64
    • /
    • 1984
  • NiNH4PO4 was Prepared from waste Ni catalyst used in hydrogenation of oil and fat. NiNH4PO4 was calcined at different temperature respectly 800,100,100˚C to prepare Nickel yellow. The result from this experiment are summerizer as follows: 1) Nickel yellow formed at 1100˚C was most clearness yellow color from color analyzer date. 2) Nickel yellow was consist of -Ni2P2O2 Ni3(PO4)2 from X-ray diffraction analysis. 3) The endothermic pick at 100˚C and exotherwic pick about 1050˚C on calcination of NiNH4PO4 were checked in DTA (difference Thermal analysis data.)

  • PDF

Cross Alkane Metathesis Reaction for Waste Plastic Degradation (폐플라스틱 분해를 위한 알칸 교차 복분해 반응)

  • Kim, Jueun;An, Kwangjin
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.22-30
    • /
    • 2021
  • 현재 인류는 플라스틱(plastic) 세상에 살고 있다. 의류, 식품, 주거 생활 곳곳에 플라스틱이 존재하며, 플라스틱이 없는 세상은 상상조차 할 수 없다. 하지만, 플라스틱 사용량 증가에 따른 폐플라스틱의 배출량의 증가는 심각한 환경문제들을 야기하여 생태계뿐만 아니라 인간에게도 위협이 되고 있다. 이를 해결하기 위한 방법으로 단순히 폐플라스틱의 처리에 그치지 않고, 이를 활용하여 새로운 고부가가치의 생성물을 제조하는 플라스틱 업사이클링(plastic upcycling) 시스템이 최근 주목을 받고 있으며, 현재 다양한 형태로 연구개발이 진행되고 있다. 그 중의 한가지로 본 기고문에서는 알칸 교차 복분해(cross alkane metathesis) 반응을 소개한다. 알칸 교차 복분해 반응은 수소화/탈수소화(hydrogenation/dehydrogenation) 반응과 올레핀 복분해(olefin metathesis) 반응으로 이루어져, 탈수소화 반응 후 생성된 이중결합 탄소를 갖는 두 개의 알켄 화합물이 자리바꿈을 통해 새로운 이중 결합을 형성하는 반응이다. 이 촉매반응 과정이 반복되면 저분자화된 새로운 알칸 화합물을 생성되는데, 이는 기존의 플라스틱 처리방식인 열분해 및 촉매 분해 공정보다 낮은 반응온도를 요구한다. 또한 이를 통해 상대적으로 높은 순도의 가솔린 및 디젤을 생성할 수 있기 때문에 폐플라스틱 처리 공정의 새로운 대안기술이 될 수 있다. 본 기고문에서 폐플라스틱 중 가장 큰 비중을 차지하는 폴리에틸렌을 처리하는 대안기술로써 알칸 교차 복분해 반응의 메커니즘과 및 촉매의 역할, 그리고 반응성에 영향을 주는 인자에 대해 기술한다.

Kinetic Study of the Fischer-Tropsch Synthesis and Water Gas Shift Reactions over a Precipitated Iron Catalyst (철 촉매를 이용한 Fischer-Tropsch 합성 반응과 수성 가스 전환 반응에 대한 반응 속도 연구)

  • Yang, Jung-Il;Chun, Dong Hyun;Park, Ji Chan;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.358-364
    • /
    • 2012
  • The kinetics of the Fischer-Tropsch synthesis and water gas shift reactions over a precipitated iron catalyst were studied in a 5 channel fixed-bed reactor. Experimental conditions were changed as follows: synthesis gas $H_2$/CO feed ratios of 0.5~2, reactants flow rate of 60~80 ml/min, and reaction temperature of $255{\sim}275^{\circ}C$ at a constant pressure of 1.5 MPa. The reaction rate of Fischer-Tropsch synthesis was calculated from Eley-Rideal mechanism in which the rate-determining step was the formation of the monomer species (methylene) by hydrogenation of associatively adsorbed CO. Whereas water gas shift reaction rate was determined by the formation of a formate intermediate species as the rate-determining step. As a result, the reaction rates of Fischer-Tropsch synthesis for the hydrocarbon formation and water gas shift for the $CO_2$ production were in good agreement with the experimental values, respectively. Therefore, the reaction rates ($r_{FT}$, $r_{WGS}$, $-r_{CO}$) derived from the reaction mechanisms showed good agreement both with experimental values and with some kinetic models from literature.

Hydrotreating for Stabilization of Bio-oil Mixture over Ni-based Bimetallic Catalysts (Ni계 이원금속 촉매에 의한 혼합 바이오오일의 안정화를 위한 수소첨가 반응)

  • Lee, Seong Chan;Zuo, Hao;Woo, Hee Chul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.69-78
    • /
    • 2021
  • Vegetable oils, such as palm oil and cashew nut shell liquid (CNSL), are used as major raw materials for bio-diesel in transportation and bio-heavy oil in power generation in South Korea. However, due to the high unsaturation degree caused by hydrocarbon double bonds and a high content of oxygen originating from the presence of carboxylic acid, the range of applications as fuel oil is limited. In this study, hydrotreating to saturate unsaturated hydrocarbons and remove oxygen in mixed bio-oil containing 1/1 v/v% palm oil and CNSL on monometallic catalysts (Ni and Cu) and bimetallic catalysts (Ni-Zn, Ni-Fe, Ni-Cu Ni-Co, Ni-Pd, and Ni-Pt) was perform under mild conditions (T = 250 ~ 400 ℃, P = 5 ~ 80 bar and LHSV = 1 h-1). The addition of noble metals and transition metals to Ni showed synergistic effects to improve both hydrogenation (HYD) and hydrodeoxygenation (HDO) activities. The most promising catalyst was Ni-Cu/��-Al2O3, and in the wide range of the Ni/Cu atomic ratio of 9/1~1/4, the conversion for HYD and HDO reactions of the catalysts were 90-93% and 95-99%, respectively. The tendency to exhibit almost constant reaction activity in these catalysts of different Ni/Cu atomic ratios implies a typical structure-insensitive reaction. The refined bio-oil produced by hydrotreating (HDY and HDO) had significantly lower iodine value, acid value, and kinetic viscosity than the raw bio-oil and the higher heating value (HHV) was increased by about 10%.

Production of Ethylbenzene from 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 에틸벤젠의 제조)

  • Joo, Young J.;Won, Jeong-Im;Kim, Chang-Min;Park, Kwang-Chun;Lee, Sang-Ok;Kim, Hong-Seok
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.326-333
    • /
    • 1996
  • Dehydrogenation of 4-vinylcyclohexene(4-VCH) to ethylbenzene is elucidated via catalytic transfer hydrogenation with the heterogeneous catalyst of Pd/C. Hydrogen-donor solvent is ethanol or water. Oxidizers of the catalytic dehydrogenation reaction are mono- or dinitro compounds, $H_2O_2$, NaClOn (n=1~4), or oxygen at $70{\sim}110^{\circ}C$. The ratio of 4-VCH/Nitro compounds is 1:0.02 to 1:0.5 and 4-VCH vs. $H_2O_2$ or NaClOn (n=1~4) is 1:0.1 to 1:3.

  • PDF

Activity and Selectivity in Low Temperature for Dibenzothiophene Hydrodesulfurization based Zeolite Support (제올라이트 담체상의 디벤조티오펜 수첨탈황반응에서 저온활성 및 선택성)

  • Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • Two types of CoMo/zeolite as well as $NiMo/{\gamma}-Al_2O_3$ were prepared and their activities and selectivities of low-temperature dibenzothiophene(DBT) hydrodesulfurization(HDS) were studied in high pressure fixed bed reactor. The HDS activities of CoMo/zeolites were higher than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures below $225^{\circ}C$ while they were lower than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures higher than $275^{\circ}C$. The main products from $NiMo/{\gamma}-Al_2O_3$ were biphenyl and cyclohexylbenzene. The product distribution of CoMo/zeolite catalysts was different from that of $NiMo/{\gamma}-Al_2O_3$. It is speculated that DBT is converted to alkylcyclohexane over zeolite based catalysts through both alkylation and hydrogenation reactions. The crystal structure of molybdenum was $MoO_3$ in fresh zeolite support while mixtures of $MoO_3$ and $MoS_2$ were observed in the aged catalyst.

  • PDF