DOI QR코드

DOI QR Code

A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support

비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구

  • Kim, Chul-Ung (Petroleum Displacement Technology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, You-Sung (Petroleum Displacement Technology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jeong, Soon-Yong (Petroleum Displacement Technology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jeong, Kwang-Eun (Petroleum Displacement Technology Research Center, Korea Research Institute of Chemical Technology) ;
  • Chae, Ho-Jeong (Petroleum Displacement Technology Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Kwan-Young (Department of Chemical and Biological Engineering, Korea University)
  • 김철웅 (한국화학연구원 그린화학연구단 석유대체기술연구센터) ;
  • 김유성 (한국화학연구원 그린화학연구단 석유대체기술연구센터) ;
  • 정순용 (한국화학연구원 그린화학연구단 석유대체기술연구센터) ;
  • 정광은 (한국화학연구원 그린화학연구단 석유대체기술연구센터) ;
  • 채호정 (한국화학연구원 그린화학연구단 석유대체기술연구센터) ;
  • 이관영 (고려대학교 화공생명공학과)
  • Published : 2009.09.30

Abstract

Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.

Keywords

References

  1. A. Y. Khodakov, W. Chu, and P. Fongarland, Advances in the Development of Novel Cobalt Fischer-Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chem Rev., 107, 1692 (2007) https://doi.org/10.1021/cr050972v
  2. H. Y. ju, M. K. Lee and D. W. Park, Catalytic Performance of Ionic Liquids for the Cycloaddition of Carbon Dioxide and Butyl Gylcidyl Ether, J. of the Korean Oil Chemists' Soc., 25(4), 469 (2008)
  3. R. Oukaci, A. H. Singleton and J. G. Goodwin, Comparison of Patented Co F-T Catalysts Using Fixed-bed and Slurry Bubble Column Reactors, Appl. Catal. A. General, 186, 129 (1999) https://doi.org/10.1016/S0926-860X(99)00169-6
  4. M. E. Dry, The Fischer - Tropsch Process: 1950 - 2000, Catal. Today, 71, 227 (2002) https://doi.org/10.1016/S0920-5861(01)00453-9
  5. W. Linghu, X. Li, K. Asami and K. Fujimoto, Supercritical Phase FischerTropsch Synthesis Over Cobalt Catalyst, Fuel Processing Technology, 85, 1121 (2004) https://doi.org/10.1016/j.fuproc.2003.10.015
  6. X. Liu, W. Linghu, X. Li, K. Asami and K. Fujimoto, Effects of Solvent on Fischer - Tropsch Synthesis, Appl. Catal. A. General, 303, 251 (2006)
  7. N. O. Elbashir and C. B. Roberts, Enhanced Incorporation of a-Olefins in the Fischer-Tropsch Synthesis ChainGrowth Process over an AluminaSupported Cobalt Catalyst in Near-Critical and Supercritical Hexane Media, Ind. Eng. Chem Res., 44, 505 (2005) https://doi.org/10.1021/ie0497285
  8. N. O. Elbashir, P. Dutta, A. Manivannan, M. S. Seehra and C. B. Roberts, Impact of Cobalt-based Catalyst Characteristics on the Performance of Conventional Gas-phase and Supercritical-phase Fischer Tropsch Synthesis, Appl. Catal. A. General, 285, 169 (2005)
  9. S. M. Kim, Y. J. Lee, J. W. Bae and H. S. Pordar, and K. W. Jun, Synthesis and Characterization of a Highly Active Alumina Catalyst for Methanol Dehydration to Dimethyl Ether, Appl. Catal. A. General, 348, 113 (2008) https://doi.org/10.1016/j.apcata.2008.06.032
  10. S. Y. Jeong, J. K. Suh, J. M. Lee and O. Y. Kwon, Preparation of Silica-Based Mesoporous Materials from Fluorosilicon Compounds: Gelation of HzSiF6 m Ammonia Surfactant Solution, J of Colloid and Interface Science, 192, 156 (1997)
  11. S. Storsaeter, B. Totdal, ]. c. Walmsley, B. S. Tanem and A. Holmen, Characterization of Alumina-, Silica-, and Titania-supported Cobalt Fischer - Tropsch Catalysts, J Catal., 236, 139 (2005)
  12. X. Huang and C. B. Roberts, Selective Fischer - Tropsch Synthesis over an Alz03 Supported Cobalt Catalyst in Supercritical Hexane, Fuel Processing Technology, 83, 81 (2003)
  13. L. Fan and K. Fujimoto, FischerTropsch Synthesis in Supercritical Fluid: Characteristics and Application, Appl. Catal. A. General, 186, 343 (1999) https://doi.org/10.1016/S0926-860X(99)00153-2
  14. X. Huang, N. O. Elbashir and C. B. Roberts, Supercritical Solvent Effects on Hydrocarbon Product Distributions from Fischer - Tropsch Synthesis over an Alumina-Supported Cobalt Catalyst, Ind. Eng. Chem Res., 43, 6369 (2004) https://doi.org/10.1021/ie0498504
  15. H. R. Khakdaman and K. Sadaghiani, Separation of Catalyst Particles and Wax from Effluent of a Fishcher-Tropsch Slurry Reactor Using Supercritical Hexane, Chemical Engineering Research and Design, 85, 263 (2007) https://doi.org/10.1205/cherd06034
  16. H. Xiong, Y. Zhang, K. Liew and J. Li, Ruthenium promotion of Co/SBA -15 Catalysts with High Cobalt Loading for Fischer - Tropsch Synthesis, Fuel Processing Technology, 90, 237 (2009) https://doi.org/10.1016/j.fuproc.2008.08.014