• Title/Summary/Keyword: Hydrogen-reduction

Search Result 1,170, Processing Time 0.036 seconds

Reducing Characteristics of Potassium Triethylborohydride

  • Yoon, Nung-Min;Yang H.S.;Hwang, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 1987
  • The approximate rates, stoichiometries and products of the reaction of potassium triethylborohydride $(KEt_3BH)$ with selected organic compounds containing representative functional groups under the standard condition $(0^{\circ}C,$ THF) were examined in order to explore the reducing characteristics of this reagent as a selective reducing agent. Primary alcohols, phenols and thiols evolve hydrogen rapidly whereas secondary and tertiary alcohols evolve very slowly. n-Hexylamine is inert to this reagent. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of noncamphor gives 3% exo- and 97% endo-norboneol. Anthraquinone is cleanly reduced to 9,10-dihydro-9,10-dihydroxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively but further reduction does not occur. Anhydrides utilize 2 equiv of hydride to give an equimolar mixture of acid and alcohol. Acid chlorides, esters and lactones are rapidly and quantitatively reduced to the corresponding alcohols. Epoxides are reduced at moderate rates with Markovnikov ring opening to give the more substituted alcohols. Primary amides liberate 1 equiv of hydrogen rapidly. Further reduction of caproamide is slow whereas benzamide is not reduced. Tertiary amides are reduced slowly. Benzonitrile utilizes 2 equiv of hydride in 3 h to go to the amine stage whereas capronitrile takes only 1 equiv. The reaction of nitro compounds undergo rapidly whereas azobenzene and azoxybenzene are reduced slowly. Cyclohexanone oxime rapidly evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine N-oxide and pyridine is reduced rapidly. Disulfides are rapidly reduced to the thiol stage whereas sulfoxide, sulfonic acid are practically inert to this reagent. Sulfones and cyclohexyl tosylate are slowly reduced. Octyl bromide is reduced rapidly but octyl chloride and cyclohexyl bromide are reduced slowly.

Strategies of the Korea-UAE Cooperation for Hydrogen Station and Hydrogen Bus (한국과 UAE의 수소 충전소와 수소 버스 협력 전략)

  • KWON, YOUNG-IN;KIM, SEOLJOO;BAEK, YOUNGSUN;JUNG, BYUNGDO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.431-441
    • /
    • 2021
  • UAE is first country in Middle East to approve UN Paris Climate Agreement. Ministry of Climate Change and Environment of UAE announced National Climate Change Plan for carbon reduction to replace 24% by clean energy. Dubai open its first hydrogen station in UAE and Middle East in 2017, and Abu Dhabi planed to open second hydrogen station in 2019 but not realized. Korean government announced hydrogen economy roadmap in 2019 and various hydrogen cooperation are realized between UAE, Korea, Germany, USA, and Japan. MOU between Ministry of State of UAE and Ministry of Land, Infrastructure and Transport of Korea in 2019 for the cooperation of hydrogen city. This study propose strategies for the 'Hydrogen Based Public Transport in UAE' by the support of Korea government considering various stakeholder.

A Study on PSA Controll Strategy for Part Load Operation of a Hydrogen Generator (수소추출기의 부분부하 운전을 위한 PSA 제어전략에 대한 연구)

  • SANGHO LEE;SEONYEOB KIM;YOUNG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.819-826
    • /
    • 2022
  • Fuel cell systems are being supplied to households and buildings to reduce greenhouse gases. The fuel cell systems have problems of high cost and slow startup due to fuel processors. Greenhouse gas reduction of the fuel cell systems is also limited by using natural gas. The problems can be solved by using a hydrogen generator consisting of a reformer and pressure swing adsorption (PSA). However, part load operation of the hydrogen generator is required depending on the hydrogen consumption. In this paper, PSA operation strategies are investigated for part load of the hydrogen generator. Adsorption and purge time were changed in the range of part load ratio between from 0.5 to 1.0. As adsorption time increased, hydrogen recovery increased from 29.09% to 48.34% at 0.5 of part load ratio. Hydrogen recovery and hydrogen purity were also improved by increasing adsorption and purge time. However, hydrogen recovery dramatically decreased to 35.01% at 0.5 of part load ratio.

Analysis of Back-to-back Refueling for Heavy Duty Hydrogen Fuel Cell Vehicles Using Hydrogen Refueling Stations Based on Cascade System (캐스케이드 시스템 기반 수소 충전소를 이용한 대형 수소 연료 전지 차량 연속 충전 분석)

  • GYU SEOK SHIM;BYUNG HEUNG PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.300-309
    • /
    • 2024
  • Hydrogen utilization in the transportation sector, which relies on fossil fuels, can significantly reduce greenhouse gas by using to hydrogen fuel cell vehicles, and its adoption depends performance of hydrogen refueling station. The present study developed a model to simulate the back-to-back filling process of heavy duty hydrogen fuel cell vehicles at hydrogen refueling stations using a cascade method. And its quantitatively evaluated hydrogen refueling station performance by simulating various mass flow rates and storage tank capacity combinations, analyzing vehicle state of charge (SOC) of vehicles. In the cascade refueling system, the capacity of the high-pressure storage tank was found to have the greatest impact on the reduction of filling time and improvement of efficiency.

Literature review of the Reduction of Hydrogen Sulfide and Ammonia in Livestock Pen: Comparison between Korean and Chinese cases (축사 내 황화수소와 암모니아의 저감방안 고찰: 한중비교)

  • Yan, Ding;Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.442-451
    • /
    • 2019
  • Objectives: The aim of this study was to review the reduction methods for ammonia (NH3) and hydrogen sulfide (H2S) exposure in livestock. Methods: By reviewing domestic and international research reports from Korea and China, reducing ammonia and hydrogen sulfide in livestock pens was analyzed in terms of ventilation, deodorant, and feed additives. In addition, exposure limits in Korea and China were examined through a comparison between 'TLV-TWA and STEL under the Industrial Safety and Health Act in Korea' and 'Management Standards for Air of Livestock Pens in China'. Results and Discussion: In order to effectively control hazardous gases and odors in livestock pens, the enhancement of natural ventilation or the addition of ventilation fans at the pollution source are being examined. Deodorants are used as adsorbents or masking deodorants. Additives to feed were zeolite powder, FeSO4·7H2O, enzymes, and microbial preparations. Use of feed additives was low-cost and had significant effects compared to other methods. Zeolite was the most commonly used in feed additive in Chinese cases and proved to be low-cost and effective for reducing harmful gases. Enzyme preparations were shown to stimulate the growth of livestock, but were expensive. Conclusions: This study reviewed and examined domestic and international research papers in Korea and China for reducing ammonia and hydrogen sulfide concentrations in livestock pens. More diverse research and the development of feed additives are needed.

Methane Partial Oxidation Using Cu-ferrite (Cu-ferrite에 의한 메탄의 부분산화)

  • Woo, Sung-Woung;Kang, Kyoung-Soo;Kim, Chang-Hee;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.124-131
    • /
    • 2007
  • Methane is partially oxidized to produce the syngas by the lattice oxygen of metal oxides in the absence of gaseous oxygen. The present work deals with ferrite including copper component, which does not chemisorb methane, to investigate the suppression of the carbon deposition during the reduction of metal oxides by methane. Iron-based oxides of $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0) was synthesized by the co-precipitation method. Thermogravimetric Analysis(TGA) was used to observe the isothermal reduction behavior of $Cu_xFe_{3-x}O_4$ and $Fe_3O_4$ at $600-900^{\circ}C$ under methane atmosphere. The crystal structures of reduced specimens were characterized by X-rays powder diffraction(XRD) technique. From the analyses of TGA, it is concluded that the reduction kinetics of $CuFe_2O_4$ was the fastest among $Fe_3O_4$ and $Cu_xFe_{3-x}O_4$(X=0.25, 0.5, 1.0). The X-ray diffraction analyses indicated that $Cu_xFe_{3-x}O_4$ was decomposed to Cu and $Fe_3O_4$ phase at $600^{\circ}C$ and was reduced to Cu and Fe phase at $800^{\circ}C$. $Fe_3O_4$, which was reduced at $900^{\circ}C$, showed Fe, graphite and $Fe_3C$ phases. On the contrary, $Cu_xFe_{3-x}O_4$ does not show the graphite or $Fe_3C$ phases. This results infer that Cu component suppress the carbon deposition on Cu-ferrite.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Reaction of Sodium Tris(diethylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Jeoung, Min-Kyoo;Kim, Jong-Mi;Kwon, Oh-Oun;Lee, Keung-Dong;Kim, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.881-888
    • /
    • 1994
  • The approximate rates and stoichiometry of the reaction of excess sodium tris(diethylamino)aluminum hydride (ST-DEA) with selected organic compounds containing representative functional groups under standardized conditions(tetrahydrofuran, $0{\circ}$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of STDEA was also compared with those of the parent sodium aluminum hydride (SAH) and lithium tris(diethylamino)aluminum hydride (LTDEA). The reagent appears to be milder than LTDEA. Nevertheless, the reducing action of STDEA is very similar to that observed previously for LTDEA, as is the case of the corresponding parent sodium and lithium aluminum hydrides. STDEA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and 1-hexanol evolved hydrogen slowly, whereas 3-hexanol and 3-ethyl-3-pentanol, secondary and tertiary alcohols, were essentially inert to STDEA. Primary amine, such as n-hexylamine, evolved only 1 equivalent of hydrogen slowly. On the other hand, thiols examined were absolutely stable. STDEA reduced aidehydes and ketones rapidly to the corresponding alcohols. The stereoselectivity in the reduction of cyclic ketones by STDEA was similar to that by LTDEA. Quinones, such as p-benzoquinone and anthraquinone, were reduced to the corresponding 1,4-dihydroxycyclohexadienes without evolution of hydrogen. Carboxylic acids and anhydrides were reduced very slowly, whereas acid chlorides were reduced to the corresponding alcohols readily. Esters and epoxides were also reduced readily. Primary carboxamides consumed hydrides for reduction slowly with concurrent hydrogen evolution, but tertiary amides were readily reduced to the corresponding tertiary amines. The rate of reduction of aromatic nitriles was much faster than that of aliphatic nitriles. Nitrogen compounds examined were also reduced slowly. Finally, disulfide, sulfoxide, sulfone, and cyclohexyl tosylate were readily reduced without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent: like LTDEA, STDEA converted ester and primary carboxamides to the corresponding aldehydes in good yields. Furthermore, the reagent reduced aromatic nitriles to the corresponding aldehydes chemoselectively in the presence of aliphatic nitriles. Consequently, STDEA can replace LTDEA effectively, with a higher selectivity, in most organic reductions.

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y.;Saud, H.M.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.