DOI QR코드

DOI QR Code

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Saud, H.M. (Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Samsudin, A.A. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
  • Received : 2018.01.10
  • Accepted : 2018.10.17
  • Published : 2019.03.28

Abstract

The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.

Keywords

References

  1. Ministry of Agriculture and Agro-based Industry Malaysia. http://www.moa.gov.my/en/objektif. Accessed May 18, 2017.
  2. Kim KY, Ko HJ, Kim HT, Kim YS, Roh YM, Lee CM, et al. 2007. Sulphuric odorous compounds emitted from pig-feeding operations. Atmos. Environ. 41: 4811-4818. https://doi.org/10.1016/j.atmosenv.2007.02.012
  3. Roth SH, Skrajny B, Reiffenstein RJ. 1995. Alteration of the morphology and neurochemistry of the developing mammalian nervous system by hydrogen sulphide. Clin. Exp. Pharmacol. 22: 379-380. https://doi.org/10.1111/j.1440-1681.1995.tb02024.x
  4. Woestyne MV, Verstraete W. 2007. Biotechnology in the treatment of animal manure, pp. 311-328. In Wallace RJ, Chesson A. (eds.), Biotechnology in Animal Feeds and Animal Feeding. Willey VCH Verlag GmbH, Weinheim. Germany.
  5. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer. 2001. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism?. Appl. Environ. Microbiol. 67: 2873-2882. https://doi.org/10.1128/AEM.67.7.2873-2882.2001
  6. Robertson LA, Kuenen JG. 2006. The colourless sulphur bacteria, pp. 985-1011. In M. Dworkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackebrandt (eds.), The Prokaryotes, vol. 2, 3rd ed., Springer, New York.
  7. Spring S, Kampfer P, Schleifer KH. 2001. Limnobacter thiooxidans gen. nov., sp. nov., a novel thiosulphate-oxidising bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 51: 1463-1470. https://doi.org/10.1099/00207713-51-4-1463
  8. Das SK, Mishra AK, Tindall B, Rainey E, Stacke-Brandt E. 1996. Oxidation of thiosulphate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: Analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int. J. Syst. Bacteriol. 46: 981-987. https://doi.org/10.1099/00207713-46-4-981
  9. Xu XJ, Chen C, Guo H, Wang A, Ren N, Lee DJ. 2016. Characterisation of a newly isolated strain Pseudomonas sp. C27 for sulphide oxidation: Reaction kinetics and stoichiometry. Sci. Rep. 6: 21032. https://doi.org/10.1038/srep21032
  10. Chung YC, Huang C, Tseng CP. 1996a. Biodegradation of hydrogen sulphide by a laboratory-scale immobilised Pseudomonas putida CH11 biofilter. Biotechnol. Prog. 12: 773-778. https://doi.org/10.1021/bp960058a
  11. Huang ZZ, Chen GQ, Zeng GM, Chen AW, Zuo Y, Guo Z, et al. 2015. Polyvinyl alcohol-immobilised Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater. J. Hazard. Mater. 289: 174-183. https://doi.org/10.1016/j.jhazmat.2015.02.043
  12. Stelting SA, Burns RG, Sunna A, Bunt CR. 2014. Survival in sterile soil and atrazine degradation of Pseudomonas sp. strain ADP immobilised on zeolite. Bioremediat. J. 18: 309-316. https://doi.org/10.1080/10889868.2014.938723
  13. Zhang YQ, Tao ML, Shen WD, Zhou YZ, Ding Y, Ma Y, et al. 2004. Immobilisation of L-asparaginase of the microparticles of the natural silk sericin protein and its characters. Biomaterials 25: 3751-3759. https://doi.org/10.1016/j.biomaterials.2003.10.019
  14. Dzionek A, Wojcieszynska D, Guzik U. 2016. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 23: 28-36. https://doi.org/10.1016/j.ejbt.2016.07.003
  15. Bayat Z, Hassanshahian M, Cappello S. 2015. Immobilisation of microbes for bioremediation of crude oil polluted environments: A mini review. Open Microbiol. J. 9: 48-54.
  16. Trelles JA, Rivero CW. 2013. Whole cell entrapment techniques, pp. 365-374. In Guisan J. Immobilization of Enzymes and Cells. Methods in Molecular Biology (Methods and Protocols), vol 1051, Humana Press, Totowa, NJ.
  17. Ramakrisna SV, Prakasham RS. 2003. Microbial fermentation with immobilised cells. Available from http://www.iisc.ernet.in/currsci/jul10/articles17.htm. Accessed January 10, 2017.
  18. Moslemy P, Neufeld RJ, Guiot SR. 2002. Biodegradation of gasoline by gellan gum- encapsulated bacterial cells. Biotechnol. Bioeng. 80: 175-184. https://doi.org/10.1002/bit.10358
  19. Zhou Z, Li G, Li Y. 2010. Immobilisation of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate-chitosan beads. Int. J. Biol. Macromol. 47: 21-26. https://doi.org/10.1016/j.ijbiomac.2010.04.001
  20. Hidayat MY, Saud HM, Samsudin AA. 2017. Isolation and characterisation of sulphur oxidising bacteria isolated from hot spring in Malaysia for biological deodorisation of hydrogen sulphide in chicken manure. Media Peternakan. 40: 178-187. https://doi.org/10.5398/medpet.2017.40.3.178
  21. Lane DJ. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Goodfellow M (eds), Nucleic Acid Techniques in Bacterial Systematics, Wiley, Chichester, UK.
  22. Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  23. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  24. Yanez-Ocampo G, Sanchez-Salinas E, Jimenez-Tobon G, Penninckx M, Ortiz-Hernandez ML. 2009. Removal of two organophosphate pesticides by a bacterial consortium immobilised in alginate or tezontle. J. Hazard. Mater. 168: 1554-1561. https://doi.org/10.1016/j.jhazmat.2009.03.047
  25. Kelleher BP, Leahy JJ, Henihan M, O'Dwyer TF, Sutton D, Leahy MJ. 2002. Advances in poultry litter disposal technology - A review. Bioresour. Technol. 83: 27-36. https://doi.org/10.1016/S0960-8524(01)00133-X
  26. Aldin S, Tu F, Nakhla G, Ray MB. 2011. Simulating the degradation of odour precursor in primary and waste-activated sludge during anaerobic digestion. Appl. Biochem. Biotechnol. 164: 1292-1304. https://doi.org/10.1007/s12010-011-9213-3
  27. Zinser E, Kolter R. 2004. Escherichia coli evolution during stationary phase. Res. Microbiol. 155: 328-336. https://doi.org/10.1016/j.resmic.2004.01.014
  28. Honma T, Akino T. 2014. Isolation and characterisation of a hydrogen sulphide-removing bacterium, Pseudomonas sp. strain DO-1. Biosci. Biotechnol. Biochem. 62: 1684-1687. https://doi.org/10.1271/bbb.62.1684
  29. Arogo J, Zhang RH, Riskowski GL, Day DL. 2000. Hydrogen sulphide production from stored liquid swine manure: a laboratory study. Trans. ASAE. 43: 1241-1245. https://doi.org/10.13031/2013.3017
  30. Clanton CJ, Schmidt DR. 2000. Sulphur compound in gasses emitted from stored manure. Trans. ASAE 43: 1229-1239. https://doi.org/10.13031/2013.3016
  31. Chung YC, Huang C, Tseng CP. 2001. Biotreatment of hydrogen sulphide- and ammonia-containing waste gases by fluidised bed bioreactor. J. Air Waste Manag. Assoc. 51: 163-172. https://doi.org/10.1080/10473289.2001.10464265
  32. Barman SR, Banerjee P, Mukhopadhayay A, Das P. 2017. Biodegradation of acenaphthene and naphthalene by Pseudomonas mendocina: Process optimization, and toxicity evaluation. J. Environ. Chem. Eng. 5: 4803-4812. https://doi.org/10.1016/j.jece.2017.09.012
  33. Akther M, Tasleem M, Alam MM, Ali S. 2017. In silico approach for bioremediation of arsenic by structure prediction and docking studies of arsenite oxidase from Pseudomonas stutzeri TS44. Int. Biodeterior. Biodegradation. 122: 82-91. https://doi.org/10.1016/j.ibiod.2017.04.021
  34. Singh U, Arora NK, Sachan P. 2017. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilised Pseudomonas putida and Pseudomonas stutzeri. Braz. J. Microbiol. 49: 38-44. https://doi.org/10.1016/j.bjm.2016.12.013
  35. Mahmood Q, Zheng P, Hu B, Jilani G, Azim MR, Wu D, et al. 2009. Isolation and characterisation of Pseudomonas stutzeri QZ1 from an anoxic sulphide-oxidising bioreactor. Anaerobe 15: 108-115. https://doi.org/10.1016/j.anaerobe.2009.03.009
  36. Graff A, Stubner S. 2003. Isolation and molecular characterisation of thiosulphate-oxidising bacteria from an italian rice field soil. Syst. Appl. Microbiol. 26: 445-452. https://doi.org/10.1078/072320203322497482
  37. Vinas M, Sabate J, Espuny MJ, Solanas AM. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71: 7008-7018. https://doi.org/10.1128/AEM.71.11.7008-7018.2005
  38. Bramhachari PV, Rama Sekhara Reddy D, Kotresha D. 2016. Biodegradation of catechol by free and immobilised cells of Achromobacter xylosoxidans strain 15DKVB isolated from paper and pulp industrial effluents. Biocatal. Agric. Biotechnol. 7: 36-44. https://doi.org/10.1016/j.bcab.2016.05.003
  39. Gutarowska B, Matusiak K, Borowski S, Rajkowska A, Brycki B. 2014. Removal of odorous compounds from poultry manure by microorganisms on perlite-bentonite carrier. J. Environ. Manage. 141: 70-76. https://doi.org/10.1016/j.jenvman.2014.03.017
  40. Matusiak K, Borowski S, Opalinski S, Bakula T, Kolacz R, Gutarowska B. 2015. Impact of a microbial-mineral biopreparation on microbial community and deodorisation of manures. Acta. Biochim. Pol. 62: 791-798. https://doi.org/10.18388/abp.2015_1135
  41. Liu YJ, Zhang AN, Wang XC. 2009. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem. Eng. J. 44: 187-192. https://doi.org/10.1016/j.bej.2008.12.001
  42. Liu J, Pan D, Wu X, Chen H, Haiqun C, Li QX, et al. 2018. Enhanced degradation of prometryn and other s-triazine herbicides in pure cultures and wastewater by polyvinyl alcohol-sodium alginate immobilised Leucobacter sp. JW-1. Sci. Total Environ. 615: 78-86. https://doi.org/10.1016/j.scitotenv.2017.09.208
  43. Chung YC, Huang C, Tseng CP. 1996b. Operation optimisation of Thiobacillus thioparus CH11 biofilter for hydrogen sulphide removal. J. Biotechnol. 52: 31-38. https://doi.org/10.1016/S0168-1656(96)01622-7
  44. Park DH, Cha JM, Ryu HW, Lee GW, Yu EY, Rhee JI, et al. 2002. Hydrogen sulphide removal utilising immobilised Thiobacillus sp. IW with Ca-alginate bead. Biochem. Eng. J. 11: 167-173. https://doi.org/10.1016/S1369-703X(02)00021-9