• Title/Summary/Keyword: Hydrogen residue

Search Result 80, Processing Time 0.032 seconds

Overview on Peroxiredoxin

  • Rhee, Sue Goo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Peroxiredoxins (Prxs) are a very large and highly conserved family of peroxidases that reduce peroxides, with a conserved cysteine residue, designated the "peroxidatic" Cys ($C_P$) serving as the site of oxidation by peroxides (Hall et al., 2011; Rhee et al., 2012). Peroxides oxidize the $C_P$-SH to cysteine sulfenic acid ($C_P$-SOH), which then reacts with another cysteine residue, named the "resolving" Cys ($C_R$) to form a disulfide that is subsequently reduced by an appropriate electron donor to complete a catalytic cycle. This overview summarizes the status of studies on Prxs and relates the following 10 minireviews.

The Role of Lys-228 Residue in Horse Liver Alcohol Dehy-drogenase Activity

  • Cho, Sun-Hyoung;Ryu, Ji-Won;Lee, Kang-Man
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.100-104
    • /
    • 1995
  • Lys-228 in horse liver alcohol dehydrogenase isoenzyme E(HLADH-E) was mutated to glycineby site-directed mutagenesis. The specific activity of the mutant enzyme was increased about 4-fold nad Michaelis constants for $NAD^+(K_a){\;}and{\;}NADH(K_q)$ increased by about 350-and 50-fold, respectively. The wild-type enzyme and K228TG mutant enzyme were treated with ethylacetimidate. Acetimidylation of the wild-type enzyme increased the activity about 10-fold, but the mutant enzyme ws little affected. These results confirm that Lys-228 residue plays an important role in the activity of the enzyme through forming the hydrogen bond with adenosine ribose of $NAD^+$.

  • PDF

Effect of Hydrogen Peroxide on Pretreatment of Oakwood in a Percolation Process (Percolation 공정에서 참나무의 전처리에 과산화수소가 미치는 영향)

  • 하석중;김성배;박순철
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.358-364
    • /
    • 1999
  • The effect of hydrogen peroxide on pretreatment of oakwood was investigated. Reaction temperature was $170^{\circ}C$ and reaction solutions used in pretreatment were aqueous ammonia, sulfuric acid and pure water. When 10% ammonia solution was used, the extents of delignification and hemicellulose recovery were 55% and 26%, respectively. These values were significantly higher as delinigfication and lower as hemicellulose recovery than those of acid hydrolysis. To overcome this problem, hydrogen peroxide was added into ammonia solution stream to increase hemicellulose recovery. But delignification and hemicellulose recovery were not increased as much as hydrogen peroxide loading was increased. And as hydrogen peroxide loading was increased, the decomposition of sugars solubilized from hemicellulose and cellulose were increased. So there were significant differences between the total amount in solid residue and liquid hydrolyzate, and the total amount in the original biomass. It was found that hydrogen peroxide added was reacted with substrate packed mostly in the front part of reactor. In order to increase hemicellulose recovery, it was necessary to treat with acidic solution than with alkali solution. Effect of hydrogen peroxide was higher in water than acid solution.

  • PDF

Characteristics of $G_{418}$-sensitive mitochondrial ATPase/ATP synthase from pleurotus florida (사철느타리버섯 중 $G_{418}$-sensitive 미토콘드리아성 ATPase/ATP synthase의 특성)

  • Kim, Jae-Woong;Kim, Dong-Hee;Lee, Jung-Bock;Lee, Sur-Koo;Min, Tae-Jin
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.477-484
    • /
    • 1992
  • The mitochondrion was purified at 44% sucrose layer from pleurotus florida by using ultracentrifuge and sucrose density gradient method. Optimum pH and temperature of ATPase and ATP synthase were pH 7.4, $60^{\circ}C$ and pH 7.5, $57^{\circ}C$ respectively, also their Km values were determined as 11.6mM and 8.4mM. ATPase was activated at 5~6mM ATP substrate concentration, then ATP synthase was 5~10mM range ADP. ATPase/ATP synthase were $Mg^{2+}$-dependent enzyme, partially inhibited by their substrate, and then showed an none competitive inhibition pattern by $G_{418}$. Amino acid composition of ATPase/ATP synthase was as follows, hydrophobic amino acid residue was 50.5%, small residue, 56.1%, hydrogen bonding residue, 43.7% and helix breaking residue, 55.2%. Phosphatidyl choline, phosphatidyl ethanolamine and phosphatidyl glycerol were contained but not phosphatidyl inositol and phosphatidyl serine. Palmitate(51.31%), stearate(18.32%) and unsaturated fatty acids($C_{18:1}$, $C_{18:2}$ and $C_{16:1}$) were predominated.

  • PDF

Engineering of the Phytase YiAPPA to Improve Thermostability and Activity and Its Application Potential in Dephytinization of Food Ingredients

  • Jing Zeng;Jianjun Guo;Lin Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1660-1670
    • /
    • 2024
  • The aim of this study was to modify phytase YiAPPA via protein surficial residue mutation to obtain phytase mutants with improved thermostability and activity, enhancing its application potential in the food industry. First, homology modeling of YiAPPA was performed. By adopting the strategy of protein surficial residue mutation, the lysine (Lys) and glycine (Gly) residues on the protein surface were selected for site-directed mutagenesis to construct single-site mutants. Thermostability screening was performed to obtain mutants (K189R and K216R) with significantly elevated thermostability. The combined mutant K189R/K216R was constructed via beneficial mutation site stacking and characterized. Compared with those of YiAPPA, the half-life of K189R/K216R at 80℃ was extended from 14.81 min to 23.35 min, half-inactivation temperature (T5030) was increased from 55.12℃ to 62.44℃, and Tm value was increased from 48.36℃ to 53.18℃. Meanwhile, the specific activity of K189R/K216R at 37℃ and pH 4.5 increased from 3960.81 to 4469.13 U/mg. Molecular structure modeling analysis and molecular dynamics simulation showed that new hydrogen bonds were introduced into K189R/K216R, improving the stability of certain structural units of the phytase and its thermostability. The enhanced activity was primarily attributed to reduced enzyme-substrate binding energy and shorter nucleophilic attack distance between the catalytic residue His28 and the phytate substrate. Additionally, the K189R/K216R mutant increased the hydrolysis efficiency of phytate in food ingredients by 1.73-2.36 times. This study established an effective method for the molecular modification of phytase thermostability and activity, providing the food industry with an efficient phytase for hydrolyzing phytate in food ingredients.

A Study of Microwave Waste Tire Pyrolysis in a Batch Reactor (회분식 반응기에서의 마이크로파 폐타이어 열분해 연구)

  • KIM, SEONG-SOO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • A series of microwave waste tire pyrolysis experiments were conducted using a lab-scale batch reactor to delineate the effects of microwave ouput power on the pyrolysis behavior of waste tire. As results of experiments, it was found that as the microwave output power was increased from 1.22 kW/kg to 2.26 kW/kg, the reaction temperature and oil yield increased significantly and the required time and microwave power consumption decreased remarkably, respectively. With increased power consumption, the content of the fixed carbon of pyrolysis residue increased.

Characterization of Surface Damage and Contamination of Si Using Cylindrial Magnetron Reactive Ion Etching

  • Young, Yeom-Geun
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.482-496
    • /
    • 1993
  • Radiation damage and contamination of silicons etched in the $CF_4+H_2$ and $CHF_3$ magnetron discharges have been characterized using Schottky diode characteristics, TEM, AES, and SIMS as a function of applied magnetic field strength. It turned out that, as the magnetic field strength increased, the radiation damage measured by cross sectional TEM and by leakage current of Schottky diodes decreased colse to that of wet dtched samples especially for $CF_4$ plasma etched samples, For $CF_4+H_2$and $CHF_3$ etched samples, hydrogen from the plasmas introduced extended defects to the silicon and this caused increased leakage current to the samples etched at low magnetic field strength conditions by hydrogen passivation. The thickness of polymer with the increasing magnetic field strength and showed the minimum polymer residue thickness near the 100Gauss where the silicon etch rate was maximum. Also, other contaminants such as target material were found to be minimum on the etched silicon surface near the highest etch rate condition.

  • PDF

The Crystal and Molecular Structure of Maltitol

  • Park, Young-Ja;Shin, Jung-Mi;Shin, Whan-Chul;Suh, Il-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.352-356
    • /
    • 1989
  • The crystal structure of maltitol, 4-O-${\alpha}$ -D-glucopyranosyl-D-glucitol, has been determined by X-ray diffraction method. The crystal is orthorhombic with cell parameters of a = 8.170(1), b = 12.731(1), c = 13.679(3) ${\AA}$, space group $P2_12_12_1$ and z = 4. The structure was solved by direct methods and refined to R = 0.030 for 1181 observed reflections measured on a diffractometer. The ${\alpha}$-glucose ring has chair conformation. The carbon atom chain of the glucitol residue has the bent, ap, Psc, Psc conformation. The angle at the ring oxygen atom is $112.6^{\circ}$ and the one at the glucosidic oxygen is $117.1^{\circ}$. The molecules are linked by very complicated hydrogen bonds, and there is an intramolecular hydrogen bond between O(1') and O(2').

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.

Comparison of Structural Types of Proline Pentamer by Quantum Chemical Calculation (QCC)

  • Jae-Ho Sim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.323-329
    • /
    • 2023
  • In this study, Proline pentamer model was used to investigate change in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. L-Proline (LP, as an imino acid residue) pentamers having four conformation types [β: φ/ψ=t−/t+, α: φ/ψ=g−/g−, PPII: φ/ψ=g−/t+ and Plike: φ/ψ= g−/g+] were carried out by QCC [B3LYP/6-31G(d,p)]. The optimized structure and formation energy were examined for designated structure. In LP, P-like and PPII types did not change by optimization, and β types were transformed into PPII having no H-bond independently of the designated ψ values. PPII was more stable than P-like by about 2.2 kcal/mol/mu. The hydrogen bond distances of d2(4-6) type H-bonds were 1.94 - 2.00Å. In order to understand the processes of the transformations, the changes of φ/ψ, distances of NH-OC (dNH/CO) and formation energies (ΔE, kcal/mol/mu) were examined.