• Title/Summary/Keyword: Hydrogen refueling stations

Search Result 50, Processing Time 0.022 seconds

A Study on Taxonomy and RCM Strategy Establishment for Performance Evaluation of Hydrogen Compression System at Hydrogen Vehicle Refueling Stations (수소자동차충전소의 수소압축장치 성능평가를 위한 분류체계 및 RCM 전략수립 연구)

  • Seong-jun Bae;Ha-neul Yim;Seo-yeon Na;Chung-keun Chae;Jin-hyeok Choi;Jin-woo Lee;Sang-bong Shin
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • Currently, Hydrogen compressor is maintained and managed according to the safety management regulations of the operator. But it is not based on technical standards, so it is necessary to establish based on reliability. In this paper, hydrogen compressor taxonomy by ISO 14224 standard reviewed for hydrogen compressor operated by KOGAS-Tech hydrogen vehicle refueling station to establish 9-stage taxonomy, and FMEA was conducted to establish RCM strategy specified in SAE JA1011, and 1012. It is expected that results of taxonomy and RCM strategy will be used as basic data for development of standards for verifying the performance of compressors.

Calculation and Comparison of Thermodynamic Properties of Hydrogen Using Equations of State for Compressed Hydrogen Storage (상태방정식을 이용한 고압수소 저장을 위한 수소 열역학 물성 계산 및 비교)

  • PARK, BYUNG HEUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.184-193
    • /
    • 2020
  • One of the technical methods to increase the volumetric energy density of hydrogen is to pressurize the gaseous hydrogen and then contain it in a rigid vessel. Especially for automotive systems, the compressed hydrogen storage can be found in cars as well as at refueling stations. During the charging the pressurized hydrogen into a vessel, the temperature increases with the amount of stored hydrogen in the vessel. The temperature of the vessel should be controlled to be less than a limitation for ensure stability of material. Therefore, the accurate estimation of temperature is of significance for safely storing the hydrogen. In this work, three well-known cubic equations of state (EOSs) were adopted to examine the accuracy in regenerating thermodynamic properties of hydrogen within the temperature and pressure ranges for the compressed hydrogen storage. The formulations representing molar volume, internal energy, enthalpy, and entropy were derived for Redlich-Kwong (RK), Soave-Redlioch-Kwong (SRK), and Peng-Robinson (PR) EOSs. The calculated results using the EOSs were compared with literature data given by NIST. It was revealed that the accuracies of RK and SRK EOSs were satisfactorily compatible and better than the results by PR EOS.

Current Status of Standardization of ISO TC197 (수소에너지에 대한 ISO 표준화 동향과 시사점)

  • KIM, JONG-WON;LEE, TAECKHONG;CHOI, JAE-WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.245-255
    • /
    • 2016
  • Commercial production line of FCEV was built in 2013 by Hyundai and followed by Toyota in 2014, with additional manufacturers planning to enter the market around 2017. Now there is limited hydrogen infrastructure over the world, but more hydrogen stations are planned, particularly in Japan, Korea, Germany, UK and USA. ISO TC 197 which was created in 1990 focused standardization in the field of systems and devices for the production, storage, transport, measurement and use of hydrogen. Total number of published ISO standards related to the TC and its SCs (number includes updates) is 17. Now there are 20 participating countries and 13 observing countries. The current status of activity of ISO TC197 was reviewed and particularly issues on hydrogen quality and hydrogen refueling station were discussed.

A Study on the Metal Wire for Hoop Wrapping of Type 2 High Pressure Tank (Type 2 고압용기 권선용 금속선재에 관한 연구)

  • HAN, JINMOOK;CHOI, SOOKWANG;LEE, SUNGHEE;CHO, KYUNGCHUL;HWANG, CHULMIN;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.338-346
    • /
    • 2019
  • During last years, hydrogen refueling infrastructure test and devices research for hydrogen station presented a significant growth consisting of the commercialization of fuel cell electric vehicles (FCEVs). However, we still have many challenges for making commercial hydrogen stations such as increased safety and cost reduction. This study demonstrates the low cost hydrogen storage tank (type 2) and effective winding method for high pressure hydrogen storage. We use numerical analysis to verify stress changes inside the wire according to the winding condition. Also liner size, winding wire size and wire tension were studied for the safety and cost down. Results show that the stress of winding wire decreased with increased winding angle and increased the liner diameter. On the other hand, the stress of winding wire increased according to the increased wire thickness and tension.

Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations (수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계)

  • SEUNGHYO AN;SEHYEON OH;EUNHEE KIM;JUNSEO LEE;BYUNGCHOL MA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

A Study on the Establishment of Bunkering Safety Zone for Hydrogen Propulsion Ships in Coastal Area (연근해 수소추진선박의 벙커링 안전구역 설정에 관한 연구)

  • Sungha Jeon;Sukyoung Jeong;Dong Nam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.433-440
    • /
    • 2023
  • This study aims to establish safety zones for bunkering operations of hydrogen propulsion ships in coastal areas through risk assessment and evaluate their validity. Using a 350 kW-class ferry operating in Busan Port as the subject of analysis, with quantitative risk assessment based on accident consequence and frequency analysis, along with a social risk assessment considering population density. The results of the risk assessment indicate that all scenarios were within acceptable risk criteria and ALARP region. The most critical accident scenarios involve complete hose rupture during bunkering, resulting in jet flames (Frequency: 2.76E-06, Fatalities: 9.81) and vapor cloud explosions (Frequency: 1.33E-08, Fatalities: 14.24). For the recommended safety zone criteria in the 6% hose cross-sectional area leakage scenario, It could be appropriate criteria considering overall risk level and safety zones criteria for hydrogen vehicle refueling stations. This research contributes to establishing safety zone for bunkering operations of hydrogen propulsion ships through risk assessment and provides valuable technical guidelines.

A Case Study on the Risk Analysis for the Installation of Measurement Error Verification Facility in Hydrogen Refueling Station (수소 충전소 계량오차 검증 설비 설치를 위한 위험성 분석 사례 연구)

  • Hwayoung, Lee;Hyeonwoo, Jang;Minkyung, Lee;Jeonghwan, Kim;Jaehun, Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.30-36
    • /
    • 2022
  • In commercial transactions of energy sources using hydrogen charging stations, high-accuracy flow meters are needed to prevent accidents such as overcharging due to inaccurate measurements and to ensure transparency in hydrogen commercial transactions through accurate measurements. This research developed a Corioli-type flowmeter prototype and conducted a risk assessment to prevent accidents during a process change comparison experiment for existing charging stations to verify the measurement performance. A process change section was defined for the installation of measurement facilities for empirical experiments and HAZOP was conducted. In addition, JSA was also conducted to secure the safety of experimenters, such as preventing valve mis-opening during empirical experiments. Measures were established to improve the risk factors derived through HAZOP, and work procedures were established to minimize human errors and ensure the safety of workers through JSA. The design change and system manufacturing for the installation of the metering system were completed by reflecting the risk assessment results, and safety could be confirmed through the performance comparison test of the developed meter prototype. The developed prototype flow meter showed a total of 30 flow measurements under the operating conditions of 70 MPa, and the average error was -1.58% to 3.96%. Such a metering error was analyzed to have the same performance as a flow meter installed and operated for commercial use.

A Study on the Selection of Hydrogen Refueling Station Locations within Military Bases Considering Minimum Safe Distances between Adjacent Buildings (인접 건물 간 최소 안전거리를 고려한 군부대 내 수소충전소 위치선정 연구)

  • Dong-Yeon Kim;Hyuk-Jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.171-180
    • /
    • 2023
  • Hydrogen energy technology is gaining importance in the era of the Fourth Industrial Revolution, offering military advantages when applied to military vehicles due to its characteristics such as reduced greenhouse gas emissions, noise, and low vibration. Korea's military has initiated the Army Tiger 4.0 plan, focusing on hydrogen application, downsizing, and AI-based smart features. The Ministry of National Defense plans to collaborate with the Ministry of Environment to expand hydrogen charging stations nationwide, anticipating increased deployment of military hydrogen vehicles. However, considering the Jet Fire and VCE(Vapor Cloud Explosion) nature of hydrogen, ensuring safety during installation is crucial. Current military guidelines specify a minimum safety distance of 2m from adjacent buildings for charging stations. Scientific methods have been employed to quantitatively assess the accident damage range of hydrogen, proposing a minimum safety distance beyond the affected area.

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

Impact Resistance Characteristics of Cementitious Composites Subjected to High-velocity Projectiles with Reinforcement Types (고속 발사체와 충돌한 시멘트복합체의 보강재 종류에 따른 내충격 특성 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2023
  • This research concentrates on the potential explosion hazards that could arise from unforeseen accidents in the rapidly proliferating hydrogen refueling stations and Energy Storage System(ESS) facilities. It underscores the pivotal role of structural protection technology in alleviating such risks. The research contributes primary data for the formulation of structure protection design by assessing the impact resistance across various reinforcement techniques used in cement composites. The experimental results elucidate that reinforced concrete, serving as the quintessential structural material, exhibits a 20% advancement in impact resistance in comparison to its non-reinforced counterpart. In situations typified by rapid loads, such as those seen with high-velocity impacts, the reinforcement of the matrix with fibers is demonstrably more beneficial than local reinforcement. These insights accentuate the importance of judiciously choosing the reinforcement method to augment impact resistance in structural design.