• Title/Summary/Keyword: Hydrogen issue

Search Result 103, Processing Time 0.022 seconds

A Study on the Risk Assessment and Improvement Methods Based on Hydrogen Explosion Accidents of a Power Plant and Water Electrolysis System (발전소 및 수전해 시스템의 수소 폭발 사고 사례 기반 위험성 평가 및 개선 방안 연구)

  • MIN JAE JEON;DAE JIN JANG;MIN CHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study addresses the escalating issue of worldwide hydrogen gas accidents, which has seen a significant increase in occurrences. To comprehensively evaluate the risks associated with hydrogen, a two approach was employed in this study. Firstly, a qualitative risk assessment was conducted using the bow-tie method. Secondly, a quantitative consequence analysis was carried out utilizing the areal locations of hazardous atmospheres (ALOHA) model. The study applied this method to two incidents, the hydrogen explosion accident occurred at the Muskingum River power plant in Ohio, USA, 2007 and the hydrogen storage tank explosion accident occurred at the K Technopark water electrolysis system in Korea, 2019. The results of the risk assessments revealed critical issues such as deterioration of gas pipe, human errors in incident response and the omission of important gas cleaning facility. By analyzing the cause of accidents and assessing risks quantitatively, the effective accident response plans are proposed and the effectiveness is evaluated by comparing the effective distance obtained by ALOHA simulation. Notably, the implementation of these measures led to a significant 54.5% reduction in the risk degree of potential explosions compared to the existing risk levels.

A study on the various operating methods of 100kW class PV-SPE system (100kW급 대용량 PV-SPE 시스템의 운전방법에 관한 연구)

  • Lee, Seok-Ju;Lee, Dong-Han;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1167-1168
    • /
    • 2006
  • Recently, the concern for environmental issue has been rising in the world such as global warming and breaking of ozone barrier by exhausting carbon dioxide(CO2) and Freon. In this situation, Photovoltaic(PV) and hydrogen energy system for utilizing clean and renewable energy was highlighted to contribute very much against the global warming prevention. Until now, authors have studied EMTDC model Development of Solar-powered Hydrogen production system and manufactured the 600W class actual PV-SPE system. Which was established in 2004 to produce highly pure hydrogen energized by PV power generation system. Sooner, authors will establish 100kW class PV-SPE system. Economically, this system produce large amount of hydrogen. In this paper, all data of 100kW class PV-SPE system will be simulated by using PSCAD/EMTDC.

  • PDF

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Large-eddy simulation on gas mixing induced by the high-buoyancy flow in the CIGMAfacility

  • Satoshi Abe;Yasuteru Sibamoto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1742-1756
    • /
    • 2023
  • The hydrogen behavior in a nuclear containment vessel is a significant issue when discussing the potential of hydrogen combustion during a severe accident. After the Fukushima-Daiichi accident in Japan, we have investigated in-depth the hydrogen transport mechanisms by utilizing experimental and numerical approaches. Computational fluid dynamics is a powerful tool for better understanding the transport behavior of gas mixtures, including hydrogen. This paper describes a Large-eddy simulation of gas mixing driven by a high-buoyancy flow. We focused on the interaction behavior of heat and mass transfers driven by the horizontal high-buoyant flow during density stratification. For validation, the experimental data of the Containment InteGral effects Measurement Apparatus (CIGMA) facility were used. With a high-power heater for the gas-injection line in the CIGMA facility, a high-temperature flow of approximately 390 ℃ was injected into the test vessel. By using the CIGMA facility, we can extend the experimental data to the high-temperature region. The phenomenological discussion in this paper helps understand the heat and mass transfer induced by the high-buoyancy flow in the containment vessel during a severe accident.

Development of a 30 kW Hydrogen-Fueled Micromix Combustor for Research (연구용 30 kW 수소 전소 마이크로믹스 연소기 개발)

  • Seojun Ock;Minsu Kim;Suhyeon Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.72-81
    • /
    • 2023
  • Hydrogen-fueled gas turbines are a promising technology that can resolve the carbon dioxide emission issue as future aviation propulsion engines and carbon-free power generations. To achieve high efficiency and stability of gas turbines using 100% hydrogen as fuel, an innovative design of combustor systems is necessary to consider the characteristics of hydrogen, which are different from those of conventional hydrocarbon fuels. Micromix is a combustor design method, which aims to terminate the reaction quickly by intense mixing of fuel and air, consequently reducing NOx and increasing the stability. In this paper, we examine the principles and design process of micromix combustors as a pure-hydrogen combustion technology, and we introduce a design of a 30 kW micromix hydrogen combustor for research.

An Analysis of Safety Management Items for Low Pressure Hydrogen Facility below 0.1MPa in Domestic Hydrogen Town (국내 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 항목 분석)

  • Lee, Duk-Gwon;Heo, Doo-Hyun;Lee, Sun-Kyu;Lee, Jung-Woon;Lyu, Geun-Jun;Lee, Yeon-Jae;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.85-91
    • /
    • 2015
  • As the interest in hydrogen energy is being increased, it is a widely issue to develop a lot of hydrogen technologies in the field of production, storage, transportation, application and others. In the aftermath, there is a hydrogen town in Ul San, which is expected to expand application fields of hydrogen energy, as a demonstration project. The hydrogen town in Ul San can consist of high and low pressure part by the gas pressure. The high pressure part is managed by 'the high pressure gas safety control act'. And, low pressure part is managed by 'the guideline for the safety management of demonstration project of hydrogen town'. In this paper, to improve efficiency of safety management, the direction of safety management is reviewed by an analysis of low pressure hydrogen facility and safety management items. And then, some improvement directions are suggested. In the end, it is expected that the results of this study could help to activate construction of hydrogen town and improve efficiency of safety management as well.

Experimental Analysis for Variation of Pressure Difference on Flooding in PEM Fuel Cell at Cathode Channel Outlet (Cathode 출구 압력 변화에 따른 PEM Fuel Cell 내에서의 플러딩에 관한 실험적 연구)

  • Ahn, Deuk-Keun;Han, Seong-Ho;Kim, Kyoung-Rock;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.390-396
    • /
    • 2009
  • The flooding, especially in channel, is one of the critical issue to put proton exchange membrane fuel cell (PEMFC) to practical use. In this paper, channel flooding was investigated the pressure difference at cathode channel outlet. A ratio of pressure difference changes to 25, 50% as its variation rate. The pressure variable rate is reflected in dimensionless number FN. As a result, modified dimensionless number $FN^*$ correctly predicted the channel flooding. This study analyzes that a variety of pressure difference is how to affect flooding at the cathode of the PEMFC.

Atomization Effects of Diesel on Autothermal Reforming Reaction (디젤연료의 미립화에 따른 자열개질 반응특성에 관한 연구)

  • Bae, Joong-Myeon;Yoon, Sang-Ho;Kang, In-Yong
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.234-243
    • /
    • 2006
  • Diesel autothermal reforming (ATR) is a chemical process to produce hydrogen for fuel cell applications. Several previous studies were carried out to identify technical issues in diesel reforming. It is hard to vaporize diesel due to its high boiling points. Liquid droplets of diesel result in inhomogeneous fuel mixing with other reactants such as $O_2\;and\;H_2O$, which leads to reduce the reforming efficiency and make undesired coke in reactor. To solve the fuel delivery issue, we applied an ultrasonic device as a fuel injection system. Ultrasonic injector (UI) remarkably enhanced the reforming efficiency. This paper will present the reforming results using UI. And we will discuss about atomization effects of diesel on autothermal reforming reaction.

  • PDF

Isolation of Bacillus sp. as a Volatile Sulfur-degrading Bacterium and Its Application to Reduce the Fecal Odor of Pig

  • Ushida, Kazunari;Hashizume, Kenta;Miyazaki, Kohji;Kojima, Yoichi;Takakuwa, Susumu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1795-1798
    • /
    • 2003
  • Fecal malodor is an acute environmental issue to be solved for the intensive animal agriculture in Japan. Among these substances volatile sulfur such as hydrogen sulfide (HS), methanethiol, and dimethyl sulfide, and dimethyl disulfide are the ones most strictly controlled in the Japanese national regulations. In this experiment, we have screened a range of standard strains of chemoheterotrophic bacteria and of the presently isolated soil bacteria for their capacity to decompose HS. We have demonstrated that Comamonas testosteroni $JCM5832^T$ and our isolate Bacillus sp. had a potential to reduce malodor when applied to the pig feces.

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.