• Title/Summary/Keyword: Hydrogen ion

Search Result 757, Processing Time 0.026 seconds

Hydrogen ion effect on the formation of DLC thin film by negative carbon ion beam (탄소 음이온빔으로 증착되는 DLC 박막 제조에 미치는 수소 이온의 영향)

  • 한동원;김용환;최동준;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.324-329
    • /
    • 2000
  • We investigated the effect of hydrogen ion beam on the formation of DLC thin film, which is deposited on the Si substrate with negative carbon ion by $Cs^+$ ion sputtering and positive hydrogen ion by Kauffmann type ion source. The amount of hydrogen in the DLC films increased as increasing hydrogen gas flow rate from 0 sccm to 12 sccm. As increasing hydrogen flow rate, $sp^2$bonding structure increased. The reason is that the hydrogen ions have relatively high energy, although total amount of hydrogen is very small compared with that of CVD process. These results suggest that the physical energy transfer plays a dominant role on the formation of DLC film.

  • PDF

Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo;Choi, Han-Woo;Kim, Joon-Kon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

Impact of Lactic Acid and Hydrogen Ion on the Simultaneous Fermentation of Glucose and Xylose by the Carbon Catabolite Derepressed Lactobacillus brevis ATCC 14869

  • Jeong, Kyung Hun;Israr, Beenish;Shoemaker, Sharon P.;Mills, David A.;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1182-1189
    • /
    • 2016
  • Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite derepressed phenotype that has ability to consume fermentable sugars simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effects of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration were deduced empirically. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Although the simultaneous utilization has been observed regardless of hydrogen ion or lactic acid concentration, the preference of substrates and the formation of two-carbon products were changed significantly. In particular, acetic acid present in the medium as sodium acetate was consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.

The effect of addition of noble gases on negative hydrogen ion production in a dc filament discharge

  • James, B.W.;Curran, N.P.;Hopkins, M.B.;Vender, D.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.40-45
    • /
    • 1999
  • The effect of the addition of helium, neon, argon and xenon on the production of negative hydrogen ions has been studied in a magnetically confined dc filament discharge. The addition of helium and neon produced effects similar to an equivalent increase in hydrogen pressure. However, the addition of argon and low fractions of xenon produced significant increases in the negative ion density for hydrogen at pressures around 1 mTorr. The addition of argon and xenon, by increasing electron density and decreasing electron temperature, achieved conditions closer to optimum for negative ion production. The largest enhancement of negative hydrogen ion density occurred with the addition of argon; it is suggested that this is due to a resonant energy exchange between excited argon atoms and hydrogen molecules.

  • PDF

Surface energy change and hydrophilic formation of PE, PS and PTFE films modification by hydrogen ion assisted reaction

  • Jung Cho;Ki Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.202-202
    • /
    • 1999
  • The Polyethylene (PE), Polystyrene (PS) and Polytetrafluoroethylene (PTFE) surface modification was investigated by hydrogen io assisted reaction (H-IAR) in oxygen environment. The IAR is a kind of surface modification techniques using ion beam irradiation in reactive gas environment. The energy of hydrogen ion beam was fixed at 1keV, io dose was varied from 5$\times$1014 to 1$\times$1017 ions/$\textrm{cm}^2$, and amount of oxygen blowing gas was fixed 4ml/min. Wettability was measured by water contact angles measurement, and the surface functionality was analyzed by x-ray photoelectron spectroscopy. The contact angle of water on PE modified by argon ion beam only decrease from 95$^{\circ}$ to 52$^{\circ}$, and surface energy was not changed significantly. But, the contact angle using hydrogen ion beam with flowing 4ml/min oxygen stiffly decreased to 8$^{\circ}$ and surface energy to 65 ergs/cm. In case of PS, the contact angle and surface energy changes were similar results of PE, but the contact angle of PTEE samples decreased with ion dose up to 1$\times$1015 ions/$\textrm{cm}^2$, increased at higher dose, and finally increased to the extent that no wetting was appeared at 1$\times$1017 ions/$\textrm{cm}^2$. These results must be due to the hydrogen ion beam that cleans the surface removing the impurities on polymer surfaces, then hydrogen ion beam was activated with C-H bonding to make some functional groups in order to react with the oxygen gases. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PE, PS and PTFE.

  • PDF

Modulation of chromatic reversibility of polydiacetylene Langmuir Schafer (LS) films by cadmium ion Ad/desorption

  • Lee, Gil Sun;Kim, Tae Young;Ahn, Dong June
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.312-315
    • /
    • 2018
  • Although the reversibility of 10,12-pentacosadiynoic amino meta-acid(PCDA-mBzA) against temperature and pH was reported, the modulation of reversibility by ion adsorption at terminal functional group has not been investigated. In this work, we developed a simple method for modulating the reversibility of PCDA-mBzA films upon a thermal stimulus by cadmium ion adsorption inducing the breakage of the outer hydrogen bonding of two hydrogen bonds, which are responsible for the reversible properties of PCDA-mBzA. External reflection-Fourier transform infrared (ER-FTIR) analyses revealed that the hydrogen bonding between the carboxylic acid groups was broken through ion adsorption and only a single hydrogen bond between the amide groups remained in the PCDA-mBzA polymer. In addition, PCDA-mBzA films could recover their original property through cadmium ion desorption. These results present that the transition between reversibility and irreversibility can be modulated artificially simply through the adsorption and desorption of metal ions.

Effects of Hard Anodizing and Plasma Ion-Nitriding on Al Alloy for Hydrogen Embrittlement Portection (알루미늄 합금의 수소취화 방지를 위한 경질양극산화 및 플라즈마이온질화의 영향)

  • Dong-Ho Shin;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.221-231
    • /
    • 2023
  • Interest in aluminum alloys for the hydrogen valves of fuel cell electric vehicles (FCEVs) is growing due to the reduction in fuel efficiency by the high weight. However, when an aluminum alloy is used, deterioration in mechanical characteristics caused by hydrogen embrittlement and wear is regarded as a problem. In this investigation, the aluminum alloy used to prevent hydrogen embrittlement was subjected to surface treatments by performing hard anodizing and plasma ion nitriding processes. The hard anodized Al alloy exhibited brittleness in which the mechanical characteristics rapidly deteriorated due to porosity and defects of surface, resulting in a decrease in the ultimate tensile strength and modulus of toughness by 15.58 and 42.51%, respectively, as the hydrogen charging time increased from 0 to 96 hours. In contrast, no distinct nitriding layer in the plasma ion-nitrided Al alloy was observed due to oxide film formation and processing conditions. However, compared to 0 and 96 hours of hydrogen charging time, the ultimate tensile strength and modulus of toughness decreased by 7.54 and 13.32%, respectively, presenting excellent resistance to hydrogen embrittlement.

Effect of Ca and BSA on Hydrogen Ion Concentration in Bovine Sperm Washed Solution (Ca과 BSA가 소 정자세척액내 수소이온농도에 미치는 영향)

  • 박영식;임경순
    • Korean Journal of Animal Reproduction
    • /
    • v.15 no.3
    • /
    • pp.201-205
    • /
    • 1991
  • This study was carried out to investigate the effects of Ca and BSA on hydrogen ion concentration in sperm washed solution. The results obtained were as follows : 1. The hydrogen concentration in 1st and 2nd sperm washed solutions was signifcinatly(p<0.01) higher when sperm was washed with SHPsolution containing 2mM Ca than when sperm washed with SHP solution or SHP solution containing 10mM Ca. 2. The hydrogen ion concentration in sperm washed solution was significnatly(p<0.05) higher when seprm was washed with SHP solution containing BSA-FAF than when sperm was washed with SHP solution or SHP solution containing BSA-V.

  • PDF

Determination of Trace Anions in Concentrated Hydrogen Peroxide by Direct Injection Ion Chromatography with Conductivity Detection after Pt-Catalyzed On-Line Decomposition

  • 김도희;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.696-700
    • /
    • 1999
  • A method has been developed for the determination of trace anion impurities in concentrated hydrogen peroxide. The method involves on-line decomposition of hydrogen peroxide, ion chromatographic separation and subsequent suppressed-type conductivity detection. H2O2 is decomposed in Pt-catalyst filled Gore-Tex membrane tubing and the resulting aqueous solution containing analytes is introduced to the injection valve of an ion chromatograph for periodic determinations. The oxygen gas evolving within the membrane tubing escapes freely through the membrane wall causing no problem in ion chromatographic analysis. Decomposition efficiency is above 99.99% at a flow rate of 0.4mL/min for a 30% hydrogen peroxide concentration. Analytes are quantitatively retained. The analysis results for several brands of commercial hydrogen peroxides are reported.

The design and fabricationt for ion fraction measurement of plasma generator (플라즈마발생기의 이온분율 측정 장치 설계 및 제작)

  • Lee, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.368-368
    • /
    • 2008
  • Ion implantation has been widely developed during the past decades to become a standard industrial tool. To comply with the growing needs in ion implantation, innovative technology for the control of ion beam parameters is required. Beam current, beam profile, ion fractions are of great interest when uniformity of the implant is an issue. Especially, it is important to measure the spatial distribution of beam power and also the energy distribution of accelerated ions. This energy distribution is influenced by the proportion of mass for ion in the plasma generator(ion source) and by charge exchange and dissociation within the accelerator structure and also by possible collective effects in the neutralizer which may affect the energy and divergence of ions. Hydrogen atom has been the object of a good study to investigate the energy distribution. Hydrogen ion sources typically produce multi-momentum beams consisting of atomic ion ($H^+$) and molecular ion ($H_2^+$ and $H_3^+$). In the beam injector, the molecular ions pass through a charge-exchanges gas cell and break up into atomic with one-half (from $H_2^+$) or one-third (from $H_3^+$) according to their accelerated energy. Burrell et al. have observed the Doppler shifted lines from incident $H^+$, $H_2^+$, and $H_3^+$ using a Doppler shift spectroscopy. Several authors have measured the proportion of mass for hydrogen ion and deuterium using an ion source equipped with a magnetic dipole filter. We developed an ion implanter with 50-KeV and 20-mA ion source and 100-keV accelerator tube, aiming at commercial uses. In order to measure the proportion of mass for ions, we designed a filter system which can be used to measure the ion fraction in any type of ion source. The hydrogen and helium ion species compositions are used a filter system with the two magnets configurations.

  • PDF