Hydrogen Ion Implantation Mechanism in GaAs-on-insulator Wafer Formation by Ion-cut Process

  • Woo, Hyung-Joo (Ion Beam Application Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Han-Woo (Ion Beam Application Group, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Joon-Kon (Ion Beam Application Group, Korea Institute of Geoscience and Mineral Resources)
  • Published : 2006.06.30

Abstract

The GaAs-on-insulator (GOI) wafer fabrication technique has been developed by using ion-cut process, based on hydrogen ion implantation and wafer direct bonding techniques. The hydrogen ion implantation condition for the ion-cut process in GaAs and the associated implantation mechanism have been investigated in this paper. Depth distribution of hydrogen atoms and the corresponding lattice disorder in (100) GaAs wafers produced by 40 keV hydrogen ion implantation were studied by SIMS and RBS/channeling analysis, respectively. In addition, the formation of platelets in the as-implanted GaAs and their microscopic evolution with annealing in the damaged layer was also studied by cross-sectional TEM analysis. The influence of the ion fluence, the implantation temperature and subsequent annealing on blistering and/or flaking was studied, and the optimum conditions for achieving blistering/splitting only after post-implantation annealing were determined. It was found that the new optimum implant temperature window for the GaAs ion-cut lie in $120{\sim}160^{\circ}C$, which is markedly lower than the previously reported window probably due to the inaccuracy in temperature measurement in most of the other implanters.

Keywords

References

  1. J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. Keyes, 'Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates,' Appl. Phys. Lett. vol. 76, pp.l884-l886, Apr. 2000 https://doi.org/10.1063/1.126200
  2. I. Radu, Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding, Ph. D. Dissertation, Martin-Luther University, Halle- Wittenberg, 2003
  3. M. Bruel, 'Application of hydrgen ion beams to Silicon On Insulator material technology,' Nucl. Instr. Meth. B. vol. 108,313-319,1996 https://doi.org/10.1016/0168-583X(95)01056-4
  4. M. Bruel, 'Silicon on insulator material technolgy,' Electron. Lett. vol. 31, pp.1201-102, 1995 https://doi.org/10.1049/el:19950805
  5. A. Ploessel and G. Krauter, 'Silicon on insulator: materials aspects and applications.' Solid-State Electronics, vol. 44, pp.775-782, 2000 https://doi.org/10.1016/S0038-1101(99)00273-7
  6. S. Cristoloveanu, 'New SOl materials and advance SOl devices,' J. Korean Phy. Soc. vol. 45, pp.l189-1192, Nov. 2004
  7. Q. Y. Tong, L. J. Huang, and U. M. Goesele, 'Transfer of semiconductor and oxide films by wafer bonding and layer cutting.' J. Electron. Mater. vol. 29, pp.928-932, Mar. 2000 https://doi.org/10.1007/s11664-000-0183-4
  8. M. Alexe and U. Goesele, Wafer bonding; Application and Technology (Springer-Verlag, Berlin, 2004), p.297
  9. E. Jalaguier, B. Aspar, S. Pocas, J. F. Michaud, M. Zussy, A. M. Pap on, and M. Bruel,'Transfer of 3in GaAs film on silicon substrate by proton implantation process,' Electron. Lett. vol. 34, pp.408-409, Feb. 1998 https://doi.org/10.1049/el:19980265
  10. I. Radu, I. Szafraniak, R. Scholz, M. Alexe, U. Goesele, 'GaAs on Si heterostructures obtained by He and/or H implantation and direct wafer bonding.' J. Appl. Phys. vol. 94, pp.7820-7825, Dec. 2003 https://doi.org/10.1063/1.1627459
  11. G. Gawlik, J. Jagielski, B. Piatkowski, 'GaAs on Si: towards a low-temperature smart-cut technology,' Vacuum, vol. 70, pp.103-107, 2003 https://doi.org/10.1016/S0042-207X(02)00627-9
  12. M. Webb, C. Jeybes, R. M. Gwillian, Z. Tabatabaian, A. Royle, B. J. Sealy, 'The influence of the ion implantation temperature and the flux on smart-cutin GaAs,' Nucl. Instr. Meth. B, vol. 237, pp.193-l96, 2005 https://doi.org/10.1016/j.nimb.2005.04.100
  13. I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Goesele, 'Low-temperature layer splitting of (100) GaAs by He+H coimplantation and direct wafer bonding,' App. Phys. Lett. vol. 82, pp.2413-24l5, Apr. 2003 https://doi.org/10.1063/1.1567045
  14. H. J. Woo, H. W. Choi, J. K. Kim, G. D. Kim, W. Hong, W. B. Choi, Y. H. Bae, 'Thick Si-on-insulator wafers formation by ion-cut process,' Nucl. Instr. Meth. B, vol. 241, pp.53l-535, Aug. 2005 https://doi.org/10.1016/j.nimb.2005.07.066
  15. G. Gawlik, R. Ratajczak, A. Turos, J. Jagielski, S. Bedell, W. L. Lanford, 'Hydrogen-ion implantation in GaAs,' Vacuum, vol. 63, pp.697-700, 200l https://doi.org/10.1016/S0042-207X(01)00260-3
  16. L. B. Freund, 'A lower bound on implant density to induce wafer splitting in forming compliant substrate structures,' Appl. Phys. Lett. vol. 70, pp.35l9-352l, June 1997 https://doi.org/10.1063/1.119219