• Title/Summary/Keyword: Hydrogen deposition

Search Result 568, Processing Time 0.03 seconds

The Effect of Some Binary Additive Systems in the Electrodeposition of Cadmium (카드뮴 전해석출에서의 이성분첨가물계의 효과)

  • Lee, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • An investigation was made of possible ways in which one could control the relative rates of cadmium deposition and hydrogen evolution by binary additive systems. Benzyl alcohol was employed as an additives due to its ability to form a hydrophobic film which inhibit the electroreduction of water to form hydrogen. The second additive was chosen to make the cadmium(II) ion less hydrophilic and increase its ability to cross the hydrophobic benzyl alcohol film and be electrodeposited at the cathode. It was shown by voltammetric and current efficiency studies that ion pairing and complexing additives could be used to accelerate the reduction of cadmium in the presence of the benzyl alcohol film. It was also shown that the benzyl alcohol film lowered the dielectric constant of the solution near the electrode enough to obtain ion pairing between the sodium ion and the negative chloride complex of cadmium and accelerate the reduction of the cadmium. This acceleration did not occur in the sulfate solution in the absence of chloride since cadmium(II) is primarily present as a positive aquo complex and ion pairing, if it occured, would not accelerate but would hinder reduction of cadmium.

  • PDF

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD (ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과)

  • Eom, Taejong;Park, Yunkyu;Lee, Chongmu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.94-98
    • /
    • 2005
  • $RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

Structural Characteristics of $Y_2O_3$ Films Grown on Differently Surface-treated Si(111) by Ultrahigh Vacuum Ionized Cluster Beam (UHV-ICB 방법으로 Si(111) 기판위에 성장된 $Y_2O_3$ 박막의 구조적 특성에 관한 연구)

  • Lee, Dong-Hun;Seong, Tae-Yeon;Jo, Man-Ho;Hwang, Jeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.528-532
    • /
    • 1999
  • Y$_2$O$_3$films were grown on SiO$_2$-covered Si(111), and hydrogen-terminated Si(111), and hydrogen-terminated Si(111) substrates at 50$0^{\circ}C$ by ultrahigh vacuum ionized cluster beam deposition (UHV-ICB). The microstructures and growth behavior of these films have been investigated by transmission electron diffraction (TED) and high-resolution transmission electron microscopy(HREM). The TED results show that the $Y_2$O$_3$grown on the SiO$_2$-Si has the epitaxial relationship of (11-1)Y$_2$O$_3$∥(111)Si and [-110]Y$_2$O$_3$∥[-110]Si. The film on the H-Si substrate contains YS\ulcorner and amorphous YSi\ulcornerO\ulcorner layers at the interface, having the orientation relationship each other. For the YSi\ulcorner and the Si substrate, the relationship is (0001)YSi\ulcorner∥(111)Si and [1-210]YSi\ulcorner∥∥[-110]Si. For the $Y_2$O$_3$and the YSi\ulcorner ; the relationship is as follows: (11-1)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner(111)Y$_2$O$_3$∥(0001)YSi\ulcorner and [-110]Y$_2$O$_3$∥[1-210]YSi\ulcorner. Explanation is given to describe the formation mechanisms of the interfacial phases of SiO\ulcorner, YSi\ulcornerO\ulcorner and YSi\ulcorner. It is shown that the crystallinity of the $Y_2$O$_3$film on the SiO$_2$-Si(111) is better than that of $Y_2$O$_3$on H-Si(111).

  • PDF

Effect of H2 on The Diamond Film Growth Mechanism by HFCVD Method Using CH3OH/H2O (HFCVD법에 의한 H2 다이아몬드 박막 제조에 수소가 미치는 영향)

  • Lee Kwon-Jai;Shin Jae-Soo;Kwon Ki-Hong;Lee Min-Soo;Koh Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.835-839
    • /
    • 2004
  • The diamond thin films was deposited on Si(100) substrate by Hot Filament Chemical Vapor Deposition (HFCVD) method using supplied the $CH_{3}OH/H_{2}O$ mixtured gas with excess H_{2} gas. The role of hydrogen ion as the growth mechanism of the diamond deposit was examined and compared the $CH_{3}OH/H_{2}O$ with the $CH_4/H_2$. Pressures in the range of $1.1\sim290{\times}10^2$ Pa were applied and using $3.4\sim4.4$ kw power. It was investigated by Scanning Electron Microscopy(SEM) and Raman spectroscopy The H ion was etching the graphite and restrained from $sp^3\;to\;sp^2$. But excess $H_2$ gas was not helped diamond deposit using $CH_{3}OH/H_{2}O$ mixtured gas. It was shown that the role of hydrogen ion of deposited diamond films using $CH_{3}OH/H_{2}O$ was different from $CH_4/H_2$.

Enhanced Sensitivity of PEDOT Microtubule Electrode to Hydrogen Peroxide by Treatment with Gold (금 처리를 통한 PEDOT 마이크로튜브 전극의 과산화수소 검출 특성 향상)

  • Park, Jongseo;Son, Yongkeun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.809-814
    • /
    • 2014
  • An array structure of conducting polymer microtubule was fabricated for an amperometric biosensor. 3,4-Ethylenedioxythiophene (EDOT) was electropolymerized in the microporous template membrane with poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid) (PEDOT/PSS) composite as a binder. The array structure can provide enhanced current collecting capability due to large active surface area compared to the macroscopic area of the electrode itself. For a biosensor application, the array electrode was tested for $H_2O_2$ detection and showed very sluggish electrochemical response to $H_2O_2$. To enhance the detection efficiency to the oxidation of $H_2O_2$, gold was treated on the electrode by two different approaches: sputtering and electrochemical deposition. Gold treatment with either method greatly enhanced the sensitivity of the electrode to $H_2O_2$. So, conducting polymer microtubule array with gold treatment was expected to be a sensitive amperometric biosensor system based on the detection of $H_2O_2$.

Micro/Nano Adhesion and Friction Properties of SAMs with Different Head and Functional Group according to the Coating Methods (코팅 방법에 따른 이종 SAMs의 관능기별 마이크로/나노 응착 및 마찰 특성)

  • Yoon Eui-Sung;Oh Hyun-Jin;Han Hung-Gu;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • Micro/nano adhesion and friction properties of self-assembled monolayers (SAMs) with different head- and end-group were experimentally studied according to the coating methods. Various kinds of SAM having different spacer chains (C10 and C18), head-group and end-group were deposited onto Si-wafer by dipping and chemical vapour deposition (CVD) methods under atmospheric pressure, where the deposited SAM resulted in the hydrophobic nature. The adhesion and friction properties between tip and SAM surfaces under nano scale applied load were measured using an atomic force microscope (AFM) and also those under micro scale applied load were measured using a ball-on-flat type micro-tribotester. Surface roughness and water contact angles were measured with SPM (scanning probe microscope) and contact anglemeter respectively. Results showed that water contact angles of SAMs with the end-group of fluorine show higher relatively than those of hydrogen. SAMs with the end-group of fluorine show lower nano-adhesion but higher micro/nanofriction than those with hydrogen. Water contact angles of SAMs coated by CVD method show high values compared to those by dipping method. SAMs coated by CVD method show the increase of nano-adhesion but the decrease of nano-friction. Nano-adhesion and friction mechanism of SAMs with different end-group was proposed in a view of size of fluorocarbon molecule.

Characteristics of methane reforming with carbon dioxide using transition metal catalyts (전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성)

  • Jang, Hyun Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.644-650
    • /
    • 2021
  • This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Effects of Neutral Particle Beam on Nano-Crystalline Silicon Thin Film Deposited by Using Neutral Beam Assisted Chemical Vapor Deposition at Room Temperature

  • Lee, Dong-Hyeok;Jang, Jin-Nyoung;So, Hyun-Wook;Yoo, Suk-Jae;Lee, Bon-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.254-255
    • /
    • 2012
  • Interest in nano-crystalline silicon (nc-Si) thin films has been growing because of their favorable processing conditions for certain electronic devices. In particular, there has been an increase in the use of nc-Si thin films in photovoltaics for large solar cell panels and in thin film transistors for large flat panel displays. One of the most important material properties for these device applications is the macroscopic charge-carrier mobility. Hydrogenated amorphous silicon (a-Si:H) or nc-Si is a basic material in thin film transistors (TFTs). However, a-Si:H based devices have low carrier mobility and bias instability due to their metastable properties. The large number of trap sites and incomplete hydrogen passivation of a-Si:H film produce limited carrier transport. The basic electrical properties, including the carrier mobility and stability, of nc-Si TFTs might be superior to those of a-Si:H thin film. However, typical nc-Si thin films tend to have mobilities similar to a-Si films, although changes in the processing conditions can enhance the mobility. In polycrystalline silicon (poly-Si) thin films, the performance of the devices is strongly influenced by the boundaries between neighboring crystalline grains. These grain boundaries limit the conductance of macroscopic regions comprised of multiple grains. In much of the work on poly-Si thin films, it was shown that the performance of TFTs was largely determined by the number and location of the grain boundaries within the channel. Hence, efforts were made to reduce the total number of grain boundaries by increasing the average grain size. However, even a small number of grain boundaries can significantly reduce the macroscopic charge carrier mobility. The nano-crystalline or polymorphous-Si development for TFT and solar cells have been employed to compensate for disadvantage inherent to a-Si and micro-crystalline silicon (${\mu}$-Si). Recently, a novel process for deposition of nano-crystralline silicon (nc-Si) thin films at room temperature was developed using neutral beam assisted chemical vapor deposition (NBaCVD) with a neutral particle beam (NPB) source, which controls the energy of incident neutral particles in the range of 1~300 eV in order to enhance the atomic activation and crystalline of thin films at room temperature. In previous our experiments, we verified favorable properties of nc-Si thin films for certain electronic devices. During the formation of the nc-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. The more resent work on nc-Si thin film transistors (TFT) was done. We identified the performance of nc-Si TFT active channeal layers. The dependence of the performance of nc-Si TFT on the primary process parameters is explored. Raman, FT-IR and transmission electron microscope (TEM) were used to study the microstructures and the crystalline volume fraction of nc-Si films. The electric properties were investigated on Cr/SiO2/nc-Si metal-oxide-semiconductor (MOS) capacitors.

  • PDF