DOI QR코드

DOI QR Code

Characteristics of methane reforming with carbon dioxide using transition metal catalyts

전이금속 촉매를 이용한 이산화탄소와 메탄의 개질 특성

  • Received : 2020.12.21
  • Accepted : 2021.02.05
  • Published : 2021.02.28

Abstract

This study characterized the reforming of methane with carbon dioxide, which is a major cause of global warming. The methane decomposition reaction with carbon dioxide was carried out using transition metal catalysts. The reactivity of tin was lower than that of a transition metal, such as nickel and iron. Most of the decomposition reaction occurred in the solid state. The melting point of tin is 505.03 K. Tin reacts in a liquid phase at the reaction temperature and has the advantage of separating carbon produced by the decomposition of methane from the liquid tin catalyst. Therefore, deactivation due to the deposition of carbon in the liquid tin can be prevented. Methane decomposition with carbon dioxide produced carbon monoxide and hydrogen. Ni was used to promote the catalyst performance and enhance the activity of the catalyst and lifetime. In this study, catalysts were synthesized using the excess wet impregnation method. The effect of the reaction temperature, space velocity was measured to calculate the activity of catalysts, such as the activation energy and regeneration of catalysts. The carbon-deposited tin catalyst regeneration temperature was 1023 K. The reactivity was improved using a nickel co-catalyst and a water supply.

본 연구는 지구 온난화의 주요 원인인 이산화탄소를 이용하여 메탄의 개질반응 특성을 수행하였다. 이산화탄소와의 메탄 분해 반응을 전이금속 촉매인 주석을 사용하여 수행되었으며, 주석의 분해 반응성은 니켈, 철과 같은 전이 금속보다 낮으며, 대부분의 분해 반응은 고체 상태 촉매하에 수행된다. 반면에 주석의 녹는점은 505.03K로 액상 촉매하에서 분해가 발생된다. 주석을 사용하는 경우 액상으로 반응하며 메탄이 분해되어 생성되는 고체상 탄소가 촉매에 침적되어 비활성화되는 것을 것을 방지하는 장점이 있다. 이산화탄소를 사용하여 메탄을 분해하는 경우 일산화탄소와 수소를 생성한다. 촉매의 활성과 수명을 높이기 위해 Ni를 사용한 경우 촉매 활성이 향상되었다. 본 연구에서는 과잉습식함침법을 이용하여 촉매를 합성하였으며, 반응 온도, 공간 속도에 따른 활성과 촉매 재생 가능성을 타진하였다. 탄소가 침적된 주석의 촉매 재생 온도는 1023 K로 나타났으며, 니켈을 조촉매로 사용하고 물을 공급하므로써 반응성이 향상되는 것으로 나타났다.

Keywords

References

  1. D. Chester Upham, Vishal Agarwal, Alexander Khechfe, Zachary R. Snodgrass, Michael J. Gordon, Horia Metiu, Eric W. McFarland, Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon", Science 358, 2017, pp.917-922, DOI : https://doi.org/10.1126/science.aao5023
  2. Hyunwoo Ha, Mi Yoo, Hyesung An, Kihyun Shin, Taeyang Han, Youhan Sohn, Sangyeol Kim, Sang-Ro Lee, Jun Hyun Han, Hyun You Kim, "Design of Reduction Process of SnO2 by CH4 for Efficient Sn Recovery", Scientific REPORTS, 7, 14427 DOI : http://dx.doi.org/10.1038/s41598-017-14826-7
  3. Alberto Abanades, Renu Kumar Rathnam, Tobias GeiBler, Annette Heinzel, Kian Mehravaran, George Muller, Michael Plevan, Carlo Rubbia, Delia Salmieri, Leonid Stoppel, Stefan Stukrad, Alfons Weisenburger, Horst Wenninger, Thomas Wetzel, "Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen", International journal of hydrogen energy, 2016, 41-49, DOI : http://dx.doi.org/10.1016/j.ijhydene.2015.11.164
  4. Ke WangKe Wang, Harrie Vredenburg, Jianliang WangJianliang Wang, Lianyong FengLianyong Feng, "Energy Return on Investment of Canadian Oil Sands Extraction from 2009 to 2015", Energies, 10(5), 2017, pp.614-627, DOI : http://dx.doi.org/10.3390/en10050614
  5. B.P. Mandal, M. Kundu, S.S. Bandyopadhyay, "Physical solubility and diffusivity of N2O and CO2 into aqueous solutions of (2-amino -2-methyl-1-propanol+monoethanolamine) and (N -methyldiethanolamine+monoethanolamine)", J. Chem. Eng. Data, 50 pp.352-358, 2005. DOI : https://doi.org/10.1021/je049826x
  6. A.D. Ebner, J.A. Ritter, "State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries", Sep. Sci. Technol., 44 pp.1273-1421, 2009. DOI : https://doi.org/10.1080/01496390902733314
  7. Soltani R, Rosen MA, Dincer I , "Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production", International Journal of Hydrogen Energy , 39(35), pp. 20266-20275, 2014. DOI : https://doi.org/10.1016/j.ijhydene.2014.09.161
  8. Jang, H., Cha, W., "Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor". Korean J. Chem. Eng., 24, pp. 374-377, 2007. DOI :https://doi.org/10.1007/s11814-007-5037-9
  9. C. Rhodesa, G. J. Hutchingsa, A. M. Ward, "Water-gas shift reaction: finding the mechanistic boundary". Catalysis Today, 23(1), 43-58, 1995 DOI : https://doi.org/10.1016/0920-5861(94)00135-O
  10. J.H. Edwards, A.M. Maitra, "The chemistry of methane reforming with carbon dioxide and its current and potential applications", Fuel Processing Technology, 42(2-3), 269-289, 1995 DOI : https://doi.org/10.1016/0378-3820(94)00105-3