• Title/Summary/Keyword: Hydrogen density

Search Result 951, Processing Time 0.027 seconds

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

Production of High-density Solid Fuel Using Torrefeid Biomass of Larch Wood (낙엽송 반탄화 바이오매스를 이용한 고밀도 고형연료 생산)

  • Song, Dae-Yeon;Ahn, Byoung-Jun;Gong, Sung-Ho;Lee, Jae-Jung;Lee, Hyoung-Woo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.381-389
    • /
    • 2015
  • In this study, the effects of moisture content and particles size of ground particles of torrefied larch chips on the pelletizing process were investigated depending on torrefaction conditions ($220^{\circ}C$-50 min, $250^{\circ}C$-50 min, $250^{\circ}C$-120 min). The moisture content in the torrefied chip decreased to 0.69~1.75%, while ash content and calorific value increased compared to untreated chip. In addition, weight loss significantly increased during torrefaction due to hemicellulose degradation. The carbon content in torrefied larch chip increased compare to untreated larch chip, while the hydrogen and oxygen contents decreased. The lignin and glucan contents in torrefied larch chip increased with increasing severity of the torrefaction condition, while hemicellulose decreased. In the particle size distribution of ground particles of torrefied larch chip, larch torrefied at severe conditions was found to produce smaller particles (~1 mm) than that of the larch torrefied at mild conditions. Macropore (over $500{\AA}$) in the torrefied particle was produced during torrefaction. During the pelletizing using ground particles of torrefied larch chip, the pressure needed in pelletizing decreased and pellet length increased with increasing moisture content, regardless of the particle size.

Changes in Properties of Silk Monofilament Caused by Drawing and Hydrolysis (견 Monofilament의 연신과 가수분해에 의한 특성변화)

  • 김동건;최진협
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.2
    • /
    • pp.160-167
    • /
    • 1996
  • The middle silk gland, that is a liquid silk thread gland consisting of silk protein, was taken out and a silk monofilament was made by drawing rapidly to approximately 3 times. In order to deteriorate the inter molecular hydrogen bonding force and to stretch in, the drawn silk filament was swoolen in boiling water. The results obtained are as follows ; The silk gland sample that just dried silk gland was occupied in crystalline region of silk-I type and random amorphous region. According to the examination of X-ray diffraction and thermal analysis, silk-II type crystal begins to appear partially in monofilament sample and spread to almost complet silk-II type crystal in 65.2% drawn sample. And, orientation of silk fibroin mlecule increased suddenly in early stage with a rise of drawing ratiofrom birefringence and density, and it was found that orientation of fibroin molecule was completed. As drawing ratio increases relation with time of hydrolysis, birefringence appeared almost fixed a tendency. Crystallization collapse by hydrolysis was not found in X-ray diffraction and thermal analysis. But, amorphous region began to flow by treated hydrolysis, that orientation of crystallization part was disturbed was supposed.

  • PDF

Effect of F$e_2$P Addition on Microstructures of Sintered 4600 Steel (4600계 소결강의 조직에 미치는 F$e_2$P첨가의 영향)

  • Kim, Dong-Uk;Lee, Wan-Jae
    • Korean Journal of Materials Research
    • /
    • v.2 no.6
    • /
    • pp.428-435
    • /
    • 1992
  • AISI 4600 Iron powder was mixed with 0~1.0% phosphor as F$e_2$P powder and/or 0~0.8% carbon as graphite powder in rotating mixer. Mixed powder was pressed 800MPa in double-punch mould. Compacts were sintered at 115$0^{\circ}C$for 30 min. in vacuum or mixed hydrogen and nitrogen gas. Sintered compacts were ground and polished, and etched by 2% nital etchant. The microstructure was observed by image analyzer and optical microscope. Density and microhardness were tested by ASTM B3l2 and Microvickers hardness tester. The results obtained were as follows : (1) As the amount of F$e_2$P powder increased, sintered microstructure showed more densified effect and the grain size was larger. (2) The shape of pore was rounded and the number of pore was decreased by F$e_2$P addition. But mean pore size was larger with F$e_2$P content. (3) Simultaneous alloying addition of F$e_2$P and graphite brought about larger grain growth than respective addition. (4) Sintering atmosphere did not affect the microstructure. (5) Hardness of sintered compact increased with phosphrous and carbon content.

  • PDF

Microstructure and plasma resistance of Y2O3 ceramics (Y2O3 세라믹스의 미세구조 및 플라즈마 저항성)

  • Lee, Hyun-Kyu;Lee, Seokshin;Kim, Bi-Ryong;Park, Tae-Eon;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.268-273
    • /
    • 2014
  • $Y_2O_3$ ceramic specimens were fabricated from the granular powder, obtained by spray drying process from the slurry. The slurry was prepared by mixing PVA binder, NaOH for Ph control, PEG and $Y_2O_3$ powder. The $Y_2O_3$ specimen was shaped in size of ${\phi}14mm$ and then sintered at $1650^{\circ}C$. The characteristics, microstructure, densities and plasma resistance of the $Y_2O_3$ specimens were investigated with the function of forming pressure and sintering time. $Y_2O_3$ specimens were exposed under the $CHF_3/O_2/Ar$ plasma, the dry etching treatment of specimens was carried out by the physical reaction etching of $Ar^+$ ion beam and the chemical reaction etching of $F^-$ ion decomposed from $CHF_3$. With increasing sintering time, $Y_2O_3$ specimens showed relatively high density and strong resistance in plasma etching test.

An Improvement in the Properties of MH Electrode of Ni/MH Battery by the Copper Coating (Ni/MH 전지에서 Cu 도금에 의한 음극활물질의 전극 특성 향상)

  • Cho, Jin Hun;Kim, In Jung;Lee, Yun Sung;Nahm, Kee Suk;Kim, Ki Ju;Lee, Hong Ki
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.568-574
    • /
    • 1997
  • The effect of microencapsulation of maetal hydride (MH) with copper on the electrode performance of a Ni/MH battery has been investigated. The MH electrodes were prepared with a combination of cold press and paste methods. The discharge capacity of the electrode increased with an addition of small amounts if CMC into the electrode, but decreased when heat-treated in an oxygen-free nitrogen flow. The capacity of a Cu-coated $LaNi_5$ electrode was higher than that of LaNi5electrode. The discharge capacity of the electrode prepared with Cu-coated $LaNi_5$ increased with the increase of copper content in the electrode. It is considered that the increase of copper content enhanced the current density on the electrode surface, leading to the increase of the discharge capacity The MH electrode coated by an acidic electroless plating method showed much higher discharge capacity than that using an alkaline electroless plating method. The discharge capacity of the $LaNi_{4.5}Al_{0.5}$ electrode was higher than that of the $LaNi_5$ electrode. Also, the effect of microencapsulation on the deactivation of $LaNi_5$ was studied using an absorption-desorption cycle in CO-containing hydrogen.

  • PDF

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.

Microstructure and Properties of Mortar Containing Synthetic Resin using Image Analysis (이미지 분석을 활용한 합성수지 혼입 모르타르의 특성 및 미세구조 분석)

  • Lee, Binna;Min, Jiyoung;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Commercial synthetic resins with great amount of hydrogen atoms were investigated for neutron shielding aggregates. Total three types of resins were considered in this study: high density polyethylene (HDPE), polypropylene (PP), and ultra molecular weight polyethylene (UPE). When these resins replaced 20, 40, 60 vol% of fine aggregates, mechanical properties were first evaluated including compressive and tensile strengths, and then image/microstructure analyses such as cross-section analysis, SEM, and X-ray CT were performed. The results showed that the compressive and tensile strengths decreased with the increase of replacement ratio of HDPE and PP, which was found through image analysis that it was closely related to the distribution of resins at the failure surface of test specimens. The strength reduction of UPE was quite small compared to HDPE and PP but it abruptly increased when the replacement level exceeded 60 vol%. The results of microstructure analyses indicated that the replacement level significantly affected the amount of air void so that it is critical to determine the reasonable amount of UPE to make cementitous materials for neutron shielding.

Effect of the Molar H2O/ and the Molar O2/C Ratio on Long-Term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell (고체산화물 연료전지용 디젤 자열개질기의 장기성능에 미치는 H2O/C와 O2/C 몰 비의 영향)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Gyu-Jong;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.110-115
    • /
    • 2007
  • Solid oxide fuel cell(SOFC) has high fuel flexibility due to its high operating temperatures. Hydrocarbonaceous fuels such as diesel has several advantages such as high energy density and established infrastructure for fuel cell applications. However diesel reforming has technical problems like coke formation in a reactor, which results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming (ATR) leads to increase of undesirable hydrocarbons at reformed gases and subsequently degrades SOFC performance. In this study, we investigate the degradation of SOFC performance(OCV, open circuit voltage) under hydrocarbon(n-Butane) feeds and characteristics of diesel performing under various ratios of reactants($H_2O/C,\;O_2/C$ molar ratios) for improvement of SOFC performance. Especially we achieved relatively high performance of diesel ATR under $H_2O/C=0.8,\;O_2/C=3$ condition.

Synthesis of Co3O4 Nanocubes as an Efficient Electrocatalysts for the Oxygen Evolution Reacitons (물 분해 과정에서 효율적인 촉매 특성을 보이는 Co3O4 nanocubes 합성)

  • Choi, Hyung Wook;Jeong, Dong In;Wu, Shengyuan;Kumar, Mohit;Kang, Bong Kyun;Yang, Woo Seok;Yoon, Dae Ho
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.355-359
    • /
    • 2019
  • The high efficient water splitting system should involve the reduction of high overpotential value, which was enhanced by the electrocatalytic reaction efficiency of catalysts, during the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) reaction, respectively. Among them, transition metal-based compounds (oxides, sulfides, phosphides, and nitrides) are attracting attention as catalyst materials to replace noble metals that are currently commercially available. Herein, we synthesized optimal monodisperse Co3[Co(CN)6]2 PBAs by FESEM, and confirmed crystallinity by XRD and FT-IR, and thermal behavior of PBAs via TG-DTA. Also, we synthesized monodispersed Co3O4 nanocubes by calcination of Co3[Co(CN)6]2 PBAs, confirmed the crystallinity by XRD, and proceeded OER measurement. Finally, the synthesized Co3O4 nanocubes showed a low overpotential of 312 mV at a current density of 10 mA·cm-2 with a low Tafel plot (96.6 mV·dec-1).