DOI QR코드

DOI QR Code

Production of High-density Solid Fuel Using Torrefeid Biomass of Larch Wood

낙엽송 반탄화 바이오매스를 이용한 고밀도 고형연료 생산

  • Song, Dae-Yeon (Department of Forest Products and Technology, Chonnam National University) ;
  • Ahn, Byoung-Jun (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Gong, Sung-Ho (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Jae-Jung (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Hyoung-Woo (Department of Forest Products and Technology, Chonnam National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
  • 송대연 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 안병준 (국립산림과학원 임산공학부 화학미생물과) ;
  • 공성호 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재정 (국립산림과학원 임산공학부 화학미생물과) ;
  • 이형우 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2014.10.31
  • Accepted : 2015.01.20
  • Published : 2015.05.25

Abstract

In this study, the effects of moisture content and particles size of ground particles of torrefied larch chips on the pelletizing process were investigated depending on torrefaction conditions ($220^{\circ}C$-50 min, $250^{\circ}C$-50 min, $250^{\circ}C$-120 min). The moisture content in the torrefied chip decreased to 0.69~1.75%, while ash content and calorific value increased compared to untreated chip. In addition, weight loss significantly increased during torrefaction due to hemicellulose degradation. The carbon content in torrefied larch chip increased compare to untreated larch chip, while the hydrogen and oxygen contents decreased. The lignin and glucan contents in torrefied larch chip increased with increasing severity of the torrefaction condition, while hemicellulose decreased. In the particle size distribution of ground particles of torrefied larch chip, larch torrefied at severe conditions was found to produce smaller particles (~1 mm) than that of the larch torrefied at mild conditions. Macropore (over $500{\AA}$) in the torrefied particle was produced during torrefaction. During the pelletizing using ground particles of torrefied larch chip, the pressure needed in pelletizing decreased and pellet length increased with increasing moisture content, regardless of the particle size.

본 연구에서는 반탄화된 낙엽송 칩을 분쇄한 후 그 입자를 이용한 펠릿성형에서 함수율과 입자크기의 영향을 반탄화 조건($220^{\circ}C$-50분, $250^{\circ}C$-50분, $250^{\circ}C$-120분)에 따라 조사하였다. 반탄화 후 함수율은 0.69~1.75%로 반탄화 처리전의 5.26%보다 낮았으나, 회분이나 발열량은 증가하였다. 또한 반탄화에 의한 중량감소율은 크게 증가하였는데 이는 헤미셀룰로오스의 분해가 활발하게 일어났기 때문으로 생각된다. 반탄화 낙엽송 칩에 포함된 탄소함량은 반탄화 처리 전 낙엽송 칩과 비교하여 증가하였으며 수소와 산소함량은 감소하였다. 반탄화 낙엽송 칩에 포함된 리그닌과 글루칸 함량은 반탄화 정도가 증가할수록 증가하였으며 헤미셀룰로오스는 감소하였다. 반탄화 칩을 분쇄하여 입자크기분포를 비교한 결과 높은 반탄화 조건은 낮은 반탄화 조건에서보다 1 mm 이하의 미세분 함량이 높았고 $500{\AA}$ 이상의 macropore가 생성되었다. 반탄화 분쇄 입자를 이용한 펠릿성형 과정에서 입자크기와 관계없이 반탄화 분쇄 입자의 함수율이 증가할수록 투입된 반탄화 분쇄 입자가 받는 압력은 감소하였으며 펠릿길이는 증가하였다.

Keywords

References

  1. Bergman, P.C.A., Boersma, A.R., Zwart, R.W.R., Kiel, J.H.A. 2005. Torrefaction for biomass co-firing in existing coal-fired power stations. ECN Biomass.
  2. Chen, W.H., Kuo, P.C. 2011. Torrefaction and co-torrefaction characterization of hemicelluloses, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36: 803-811. https://doi.org/10.1016/j.energy.2010.12.036
  3. Chen, Y., Liu, B., Yang, H., Yang, Q., Chen, H. 2014. Evolution of functional groups and pore structure during cotton and corn stalks torrefaction and its correlation with hydropobicity. Fuel 137: 41-49. https://doi.org/10.1016/j.fuel.2014.07.036
  4. Di Blasi, C., Lanzetta, M. 1997. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. Journal of Analytical and Applied Pyrolysis 40: 287-303.
  5. Kim, Y., Lee, S., Lee, H., Lee, J. 2012. Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera). Bioresource Technology 116: 120-126. https://doi.org/10.1016/j.biortech.2012.04.033
  6. Lee, J.W., Kim, Y.H., Lee, S.M. and Lee, H.W. 2012. Torrefaction characteristics of wood chip for the production of high energy density wood pellet. Korean Chemical Engineering Research 50: 385-389. https://doi.org/10.9713/kcer.2012.50.2.385
  7. Lee, S., Ahn, B., Choi, D., Han, G., Jeong, H., Ahn, S., Yang, I. 2013. Effects of densification variables on the durability of wood pellets fabricated with Larix kaempferi G. and Liriodendron tulipifera L. sawdust. Biomass and Bioenergy 48: 1-9. https://doi.org/10.1016/j.biombioe.2012.10.015
  8. Lehtikangas, P. 2001. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20: 351-360. https://doi.org/10.1016/S0961-9534(00)00092-1
  9. Melkior, T., Jacob, S., Gerbaud, G., Hediger, S., Le Pape, L., Bonnefois, I. 2012. NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92: 271-280. https://doi.org/10.1016/j.fuel.2011.06.042
  10. Na, B., Ahn, B., Cho, S., Lee, J. 2013. Optimal condition of torrefaction for the high-density solid fuel of Larch (Larix kaempferi). Korean Chemical Engineering Research 51(6): 739-744. https://doi.org/10.9713/kcer.2013.51.6.739
  11. Peduzzi, E., Boissonnet, G., Haarlemmer, G., Dupont, C., Marechal, F. 2014. Torrefaction modelling for lignocellulosic biomass conversion processes. Energy 70: 58-67. https://doi.org/10.1016/j.energy.2014.03.086
  12. Peng, J.H., Bi, H.T., Sokhansanj, S., Lim, J.C. 2012. A study of particle size effect on biomass torrefaction and densification. Energy and Fuels 26: 3826-3839. https://doi.org/10.1021/ef3004027
  13. Phanphanich, M., Mani, S. 2010. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology 102: 1246-1253.
  14. Pimchuai, A., Dutta, A., Basu, P. 2010. Torrefaction of agriculture residue to enhance combustible properties. Energy and Fuels 24: 4638-4645. https://doi.org/10.1021/ef901168f
  15. Prins, M.J., Ptasinski, K.J., Janssen, F.J.J.G. 2006. Torrefaction of wood. Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis 77: 35-40. https://doi.org/10.1016/j.jaap.2006.01.001
  16. Satpathy, S.K., Tabil, L.G., Meda, V., Naik, S.N., Prasad, R. 2014. Torrefactin of wheat and barley straw after microwave heating. Fuel 124: 269-278. https://doi.org/10.1016/j.fuel.2014.01.102
  17. Shang, L., Ahrenfeldt, J., Holm, J.K., Sanadi, A.R., Barsberg, S. and Thomsen, T. 2012. Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass and Bioenergy 40: 63-70. https://doi.org/10.1016/j.biombioe.2012.01.049
  18. Simes, H.C., Hassler, C.C. and Bean, T.H. 1998. Wood densification, 833, West Virginia University Extension Service, Morgantown, West Virginia.
  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008. In: Laboratory Analytical Procedure No. TP-510-42618. NREL, Golden, CO.
  20. Uemura, Y., Omar, W.N., Tsutsui, T., Yusup, S.B. 2011. Torrefaction of oil palm wastes. Fuel 90: 2585-2591. https://doi.org/10.1016/j.fuel.2011.03.021

Cited by

  1. Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.360