• Title/Summary/Keyword: Hydrogen Permselective Membrane

Search Result 11, Processing Time 0.02 seconds

Hydrogen Permselective Membrane using the Zirconia Coated Support (지르코니아 코팅 지지체를 이용한 수소분리막)

  • Choi, Ho-Sang;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • The hydrogen permselective membrane were prepared by chemical vapor deposition (CVD) aiming at the applications to hydrogen iodide decomposition in the thermochemical IS process, and it was evaluated for the possibility as a separation membrane. An electron probe X-ray microanalyzer (EPMA) and SEM picture were used to analyze the morphology and structure of the prepared membranes. It was confirmed that Zr-Si-O layer exist in the surface of the prepared membrane using zirconia coated support. Single-component permeance to $H_2$ and $N_2$ were measured at $300{\sim}600^{\circ}C$. Hydrogen permeance through the Z-1 membrane at a permeation temperature of $600^{\circ}C$ was about $1{\times}10^{-7}\;mol{\cdot}Pa^{-1}{\cdot}m^{-2}{\cdot}s^{-1}$. The selectivities of $H_2/N_2$ at $600^{\circ}C$ were 5.0 and 5.75 for Z-1 and Z-2 membrane, respectively.

Propane Dehydrogenation over a Hydrogen Permselective Membrane Reactor

  • Chang, Jong-San;Roh, Hyun-Seog;Park, Min-Seok;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.674-678
    • /
    • 2002
  • The dehydrogenation of propane to propylene has been studied in an isothermal high-temperature shell-and-tube membrane reactor containing a Pd-coated ${\psi}$-Al2O3 membrane and a Pt/K/Sn/Al2O3 packed catalyst . A tubular Pd-coated ${\psi}$-Al2O3 membrane was prepared by an electroless plating method. This membrane showed high hydrogen to nitrogen permselectivities (PH2N2 = 10-50) at 400 $^{\circ}C$ and 500 $^{\circ}C$ with various transmembrane pressure drops. The employment of a membrane reactor in the dehydrogenation reaction, which selectively separates hydrogen from the reaction mixture along the reaction path, can greatly increase the conversion and enable operation of the reactor at lower temperatures. High hydrogen permselectivity has been confirmed as a key factor in determining the reactor performance of conversion enhancement.

The Preparation Characteristics of Hydrogen Permselective Membrane in IS Process of Nuclear Hydrogen Production (원자력 수소제조 IS 공정의 수소분리막 제조 특성)

  • Son, Hyo-Seok;Choe, Ho-Sang;Kim, Jeong-Min;Hwang, Gap-Jin;Park, Ju-Sik;Bae, Gi-Gwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.119-123
    • /
    • 2005
  • The thermochemical splitting of water has been proposed as a clean method for hydrogen production. The IS process is one of the thermochemical water splitting processes using iodine and sulfur as reaction agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at $450^{\circ}C$). The silica membranes prepared by CVD. method were applied to the decomposition reaction of HI vapor. The permeation characteristics of hydrogen and nitrogen belong to the Knudsen flow pattern.

  • PDF

Improvement of the Thermochemical water-splitting IS Process Using the Membrane Technology (분리막 기술을 이용한 열화학적 수소제조 IS[요오드-황] 프로세스의 개선)

  • Hwang, Gab-Jin;Kim, Jong-Won;Sim, Kyu-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.249-258
    • /
    • 2002
  • Thermochemical water-splitting IS(Iodine-Sulfur) process has been investigating for large-scale hydrogen production. For the construction of an efficient process scheme, two kinds of membrane technologies are under investigating to improve the hydrogen producing HI decomposition step. One is a concentration of HI in quasi-azeotropic HIx ($HI-H_2O-I_2$) solution by elecro-electrodialysis. It was confirmed that HI concentrated from the $HI-H_2O-I_2$ solution with a molar ratio of 1:5:1 at $80^{\circ}C$. The other is a membrane reactor to enhance the one-pass conversion of thermal decomposition reaction of gaseous hydrogen iodide (HI). It was found from the simulation study that the conversion of over 0.9 would be attainable using the membrane reactor using the gas permeation properties of the prepared silica hydrogen permselective membrane by chemical vapor deposition (CVD). Design criterion of the membrane reactor was also discussed.

Separation of Organic Liquid Mixtures using Plasma Membrane (플라즈마 멤브레인을 이용한 유기용매 혼합을 분리)

  • 김성오;박복기;김두석;박진교;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.642-644
    • /
    • 1999
  • We have prepared the plasma-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma polymerization technique. Plasma polymerization techniques were utilized in the development of hydrophilic composite membranes having high hydrogen ion permeability and excellent dimensional stability. To develop an organic liquid permselective Membrane, suppressing membrane swearing as well as enhancing the solubility difference is impotant. the objectives of the present study are to disign a suitable membrane for an organic-mixture system by the control of the plasma-polymer solubility.

  • PDF

Synthesis of $H_2$-Permselective Silica Films by Chemical Vapor Deposition (화학증착(CVD)에 의한 선택적 수소 투과성 실리카막의 제조)

  • 남석우;하호용;홍성안
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.21-32
    • /
    • 1992
  • Hydrogen-permselective silica membranes were synthesized within tim walls of porous Vycor tubes by chemical vapor depostion of $SiO_2$. Film deposition was carried out using $SiCl_4$ hydrolysis either in the oppm shag reactants or in the one-sided geometry. At temperatures above $600^{\circ}C$ the permeation rate of hydrogen thorough the silica films varied between 0.01 and $025cm^3(STP)/cm^2-min-atm$ depending on the reaction geometry and the $H_2 : N_2$ permeation ratio was about 1000. Permeation rates of both $H_2$ and $N_2$ increased with increasing temperature. The silica membranes produced by one-sided deposition have higher hydrogen permmeation rates than those produced by the opposing reactants geometry although the membranes formed in an opposing reactants geometry were relatively stable during the heat treatment or after exposure to ambient air. These membranes can be applied to high temperature gas separations or membrane reactors once the film deposition process is optimized to get high permeability as well as good stability.

  • PDF

Gas Permeation Characteristics of the Prepared SiC Membrane through Polyimide Carbonization Treatmemt (폴리이미드의 탄화 처리에 의한 SiC 분리막의 가스투과 특성)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.66-70
    • /
    • 2005
  • For the application in HI decomposition reaction of thermochemical water-splitting IS process, the carbonized membranes using the polymer material (polyimide) were prepared, and SiC membrane was also prepared by SiO treatment on those carbonized membranes. The weight change by the carbonation of polyimide was about 50%, and the weight decreased with an increase of carbonation temperature. The gas permeance ($H_2$ or $N_2$) of carbonized membrane decreased with an increase of carbonation temperature led to the pore closing. The gas permeance ($H_2$ or $N_2$) of SiC membrane increased with an increase of SiO treatment concentration, and the gas permeation mechanism was changed from the activiation energy flow to Knudsen flow.

Hydrogen-Permselective TiO$_2$2/SiO$_2$2 Membranes Formed by Chemical Vapor Deposition

  • Nam, Suk-Woo;Ha, Heung-Yong;Yoon, Sung-Pil;Jonghee Han;Lim, Tae-Hoon;Oh, In-Hwan;Seong- Ahn Hong
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 2001
  • Films of TiO$_2$/SiO$_2$ were deposited on the inner surface of the porous glass support tubes by decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate (TEOS) at atmospheric pressure. Dense and hydrogen -permselective membranes were formed at 400-600$\^{C}$. The permeation rates of H$_2$ through the membrane at 600$\^{C}$ were 0.2-0.4 ㎤(STP)/min-㎠ atm and H$_2$:N$_2$permeation ratios were above 1000. The permeation properties of the membranes were investigated at various deposition temperatures and TIPT/TEOS concentrations. Decomposition of TIPT alone at temperatures above 400$\^{C}$ produced porous crystalline TiO$_2$ films and they were not H7-selective. Decomposition of TEOS produced H$_2$-permeable SiO$_2$ films at 400-600$\^{C}$ but film deposition rate was very low. Addition of TIFT to the TEOS stream significantly accelerated the deposition rate and produced highly H$_2$-selective films. Increasing the TIPT/TEOS concentration ratio increased the deposition rate. The TiO$_2$/SiO$_2$ membranes formed at 600 $\^{C}$ have the permeation properties comparable to those of SiO$_2$ membranes produced from TEOS.

  • PDF

Pervaporation of Organic Solvents using Plasma Polymerized Thin Film (플라즈마 중합박막을 이용한 유기용매의 투과증발)

  • Kim, Sung-O;Park, Bok-Kee;Kim, Du-Seok;Park, Jin-Kyu;Ryu, Seong-Ryal;Lee, Jin;Ra, Dong-Kyun;Lee, Deok-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1702-1703
    • /
    • 1999
  • We have prepared the plasma-polymerized membrane for pervaporation of organic-liquid mixtures by the plasma polymerization technique. Plasma polymerization techniques were utilized in the development of hydrophilic composite membranes having high hydrogen ion permeability and excellent dimensional stability. To develop an organic liquid permselective membrane. suppressing membrane swelling as well as enhancing the solubility difference is important, the objectives of the present study are to design a suitable membrane for an organic-mixture system by the control of the plasma-polymer solubility.

  • PDF