• Title/Summary/Keyword: Hydrogen Energy

Search Result 4,247, Processing Time 0.03 seconds

Measuring the Economic Impacts of Hydrogen Economy in South Korea: An Input-output Approach (산업연관분석을 이용한 수소경제의 경제적 파급 효과 분석)

  • SU-BIN CHOI;JU-HEE KIM;SEUNG-HOON YOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.398-412
    • /
    • 2023
  • The Korean government is actively promoting the hydrogen industry as a key driver of economic growth. This commitment is evident in the 2019 hydrogen economy activation roadmap and the 2021 basic plan for hydrogen economy implementation. This study quantitatively analyzes the economic impact of the hydrogen economy using input-output analysis based on the Bank of Korea's 2019 input-output table, projecting its size by 2050. Four parts dealt with production-inducing, value-added creation, employment-inducing, and wage-inducing based on a demand-driven model. The results reveal that transportation had the most remarkable economic effect throughout the hydrogen economy, and production was the least. The hydrogen economy is projected to reach 71.2 trillion won by 2050.

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment (청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가)

  • SO JEONG JANG;DAE WOONG JUNG;JEONG YEOL KIM;YONG WOO HWANG;HEE KYUNG AN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.175-184
    • /
    • 2024
  • This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

Study on the Optimum Capacity Analysis for Hydrogen Fueling Station in Korea (국내 수소충전소의 적정 용량 분석)

  • HAN, JA-RYOUNG;PARK, JINMO;LEE, YOUNG CHUL;KIM, SANG MIN;JEON, SO HYUN;KIM, HYOUNG SIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.649-656
    • /
    • 2017
  • At present, hydrogen is emerging as a future energy source based on environment-friendly aspect, creation of new industry, and enhancement of domestic energy security. In accordance with it, the world's leading automobile companies are focusing on the development and commercialization of hydrogen electric vehicle technology, and each country is strengthening its hydrogen fueling station deployment strategy for its own country. Furthermore, the supply of hydrogen fueling stations is actively promoting under national support. More than 500 hydrogen fueling stations are being constructed, operated and planned around the world. The introduction of hydrogen energy is also progressing in Korea, by announcing road-map to supply hydrogen electric vehicles and hydrogen fueling stations by year. However, there is insufficient discussion on the capacity of hydrogen fueling station in Korea. Therefore, this study suggests the optimum capacity of hydrogen fuelling station for domestic hydrogen economy.

Accurate Determination of Hydrogen Adsorption on Metal Materials Considering the Equations of State and its Influential Errors

  • Cho, Won-Chul;Park, Chu-Sik;Han, Sang-Sup
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1229-1230
    • /
    • 2006
  • Adsorption isotherms of hydrogen by step-by-step method are widely used. However, the relations between the equations of state and the accumulated errors produced by step-by-step method and the mechanical errors of pressure or temperature controller were not analyzed. Considering the influence of various errors on the equations of state, we could find out the factors and compare the performance of the equations of state.

  • PDF

Economic Feasibility Comparison of Overseas Green Ammonia Project Using Renewable Energy (신재생 에너지를 이용한 해외 그린 암모니아 프로젝트에 대한 경제성 비교)

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.547-553
    • /
    • 2024
  • Hydrogen is considered a key energy source to achieve carbon neutrality through the global goal of 'Net Zero'. Due to limitations in domestic green hydrogen production, Korean companies are interested in importing green hydrogen produced overseas. Because Australia and the Middle East possess high-quality renewable energy resources, they are attracting attention as suitable regions for producing green hydrogen using renewable energy. The cost of constructing and operating a green ammonia plant varies depending on the region. In this study, an economic feasibility comparison of green ammonia plant construction in Australia and the Middle East is conducted. Through this, it is expected to contribute to the economic analysis and feasibility analysis of the project to import hydrogen in the form of green ammonia into Korea.

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

Simulation for the Evaluation of Reforming Parameter Values of the Natural Gas Steam Reforming Process for a Small Scale Hydrogen-Fueling Station (소규모 수소 충전소용 천연가스 수증기 개질공정의 수치모사 및 공정 변수 값의 산정)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yu-Taek;Roh, Hyun-Seog;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.12-25
    • /
    • 2007
  • Numerical simulation of the natural gas steam reforming process for on-site hydrogen production in a $H_2$ fueling station was conducted on the basis of process material and heat balances. The effects of reforming parameters on the process efficiency of hydrogen production were investigated, and set-point values of each of the parameters to minimize the sizes of unit process equipments and to secure a stable operability of the reforming process were suggested. S/C ratio of the reforming reactants was found to be a crucial parameter in the reforming process mostly governing both the hydrogen production efficiency and the stable operability of the process. The operation of the process was regarded to be stable if the feed water(WR) as a reforming reactant could evaporate completely to dry steam through HRSG. The optimum S/C ratio was 3.0 where the process efficiency of hydrogen production was maximized and the stable operability of the process was secured. The optimum feed rates of natural gas(NGR) and WR as reforming reactants and natural gas(NGB) as a burner fuel were also determined for the hydrogen production rate of $27\;Nm^3/h$.

Status of Hydrogen Bus Operations and Charging Stations and Policy Reviews in California, USA (미국 캘리포니아 수소 버스와 충전소 운영 현황과 정책 고찰)

  • KIM, CHANGMO;JIN, SANGKYU;JIN, GOANG SUNG;KWON, YOUNG-IN;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.463-469
    • /
    • 2022
  • After reviewing the current status of hydrogen buses and hydrogen charging stations in the United States, as well as related laws and programs, it was found that the federal and state governments supported the supports of hydrogen buses and the deployment of hydrogen charging infrastructure through various policies and programs. In order to promote the spread of domestic and overseas hydrogen buses and hydrogen charging infrastructure, it is necessary to develop and apply various legal systems and programs that can provide incentives to hydrogen bus manufacturers, hydrogen charging station installers, hydrogen bus operating organizations and entities. It is necessary to develop and apply various legal systems and programs that can provide incentives to hydrogen bus manufacturers, hydrogen charging station installers, hydrogen bus operating organizations and entities.

Economic Impact Analysis of Hydrogen Energy Deployment Applying Dynamic CGE Model (동태 CGE 모형을 활용한 수소에너지 보급의 경제적 영향 추정)

  • Bae, Jeong-Hwan;Cho, Gyeong-Lyeob
    • Environmental and Resource Economics Review
    • /
    • v.16 no.2
    • /
    • pp.275-311
    • /
    • 2007
  • Hydrogen energy is emphasized as a substitutable energy of carbon-based energy system in the future, since it is non-depletable and clean energy. Long term vision of Korean government on the national energy system is to promote hydrogen energy by 15% of final energy demand until 2040. This study analyzes economic impacts of hydrogen energy development employing a dynamic CGE model for Korea. Frontier technology such as hydrogen energy is featured as slow diffusion at the initial stage due to the learning effect and energy complementarity. Without government intervention, hydrogen energy would be produced upto 6.5% of final energy demand until 2040. However, if government subsidizes sales price of hydrogen energy by 10%, 20%, and 30%, share of hydrogen energy would increase 9.2%, 15.2%, and 37.7% of final energy demand. This result shows that the slow diffusion problem of hydrogen energy as frontier technology could be figured out by market incentive policy. On the other hand, production levels of transportation sector would increase while growth rate of oil and electricity sectors would decline. Household consumption would be affected negatively since increase of consumption due to the price decrease would be overwhelmed by income reduction owing to the increase of tax. Overall, GDP would not decrease or increase significantly since total production, investment, and export would increase even if household consumption declines.

  • PDF

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.