• 제목/요약/키워드: Hydrodynamic size

검색결과 195건 처리시간 0.027초

Strain relaxed Co nanocrystals formation from thin films on sapphire substrate induced by nano-second laser irradiation

  • 서옥균;강덕호;손준곤;최정원;하성수;김선민;강현철;노도영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.145.2-145.2
    • /
    • 2016
  • We report the phase transformation of Co thin films on a sapphire substrate induced by laser irradiation. As grown Co films were initially strained and tetragonally distorted. With low power laser irradiation, the surface was ruptured and irregular holes were formed. As the laser power was increased, the films changed into round shape Co nanocrystals with well-defined 6-fold structure. By measuring the XRD of Co nanostructure as a function of laser energy densities, we found that the change of morphological shapes from films to nanocrystals was accompanied with decrease of the tetragonal distortion as well as strain relaxation. By measuring the size distribution of nanocrystals as a function of film thickness, the average diameter is proportional to 1.7 power of the film thickness which was consistent with the prediction of thin film hydrodynamic (TFT) dwetting theory. Finally, we fabricated the formation of size controlling nanocrystals on the sapphire substrate without strain.

  • PDF

해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구 (A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom)

  • 나인삼;조철희;정우철;김두홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

Prediction of Axial Solid Holdups in a CFB Riser

  • Park, Sang-Soon;Chae, Ho-Jeong;Kim, Tae-Wan;Jeong, Kwang-Eun;Kim, Chul-Ung;Jeong, Soon-Yong;Lim, JongHun;Park, Young-Kwon;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.878-883
    • /
    • 2018
  • A circulating fluidized bed (CFB) has been used in various chemical industries because of good heat and mass transfer. In addition, the methanol to olefins (MTO) process requiring the CFB reactor has attracted a great deal of interest due to steep increase of oil price. To design a CFB reactor for MTO pilot process, therefore, we has examined the hydrodynamic properties of spherical catalysts with different particle size and developed a correlation equation to predict catalyst holdup in a riser of CFB reactor. The hydrodynamics of micro-spherical catalysts with average particle size of 53, 90 and 140 mm was evaluated in a $0.025m-ID{\times}4m-high$ CFB riser. We also developed a model described by a decay coefficient to predict solid hold-up distribution in the riser. The decay coefficient developed in this study could be expressed as a function of Froude number and dimensionless velocity ratio. This model could predict well the experimental data obtained from this work.

Preparation and characterization of rutile phase TiO2 nanoparticles and their cytocompatibility with oral cancer cells

  • Vu, Phuong Dong;Nguyen, Thi Kieu Trang;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제44권3호
    • /
    • pp.108-114
    • /
    • 2019
  • In the present study, rutile phase titanium dioxide nanoparticles ($R-TiO_2$ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at $900^{\circ}C$. The composition of $R-TiO_2$ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of $R-TiO_2$ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared $R-TiO_2$ NPs was 76 nm, the surface area was $19m^2/g$, zeta potential was -20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)-$H_2O$ solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that $R-TiO_2$ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of $R-TiO_2$ NPs for the aesthetic white pigmentation of teeth.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제2권3호
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

대형선망어구에 사용되는 무결절 망지의 종류별 유체역학적 특성 연구 (Hydrodynamic characteristics of knotless nettings for large purse seine gear)

  • 강다영;김현영;구명성;이춘우;차봉진
    • 수산해양기술연구
    • /
    • 제53권3호
    • /
    • pp.228-239
    • /
    • 2017
  • This study investigated the drag coefficient and lift coefficient of thirteen kinds of knotless nettings used for large purse seine gear. By comparing the hydrodynamic characteristics with nets of the previous study, the characteristics of this study were derived as a purse seine gear. Thirteen kinds of nettings with different length of bar (l) and diameter (d) were used in the experiment, out of which six kinds used the 30 mm in mesh size and three kinds with 40 mm. The drag coefficient ($C_d$) also increased with increasing d/l. It can be expressed as $C_d=3.71499(d/l)+0.76595$ at a current speed 0.4 m/s and $C_d=4.30324(d/l)+0.69056$ at a current speed 0.5 m/s. Compared with previous studies, drag coefficient values were similar to knotless net of similar d/l and smaller than drag coefficient of knot net. Therefore, using knotless net in a purse seine has the advantage of reducing the resistance acting on the purse seine gear.

쌍축 컨테이너선의 조종성능 특성 연구 (Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs)

  • 김연규;김선영;김형태;유병석;이석원
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

Size Characterization of Sodium Hyaluronate by Field Programming Frit Inlet Asymmetrical Flow Field-Flow Fractionation/Multiangle Light Scattering

  • Kim, Hoon-joo;Lee, Hee-jeong;Moon, Myeong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권3호
    • /
    • pp.413-418
    • /
    • 2006
  • Sodium hyaluronate (NaHA), water soluble polymer having ultra-high molecular weight, is characterized by using on-line frit inlet asymmetrical flow field-flow fractionation (FI-AFlFFF) and multiangle light scattering (MALS). This study demonstrates the capability of power programming FI-AFlFFF for the separation of NaHA and the applicability of FI-AFlFFF with MALS for the characterization of molecular weight distribution and their structural information. Since sample injection and relaxation in FI-AFlFFF are achieved by using hydrodynamic relaxation, separation of high molecular weight polymers can be achieved smoothly without halting the separation flow. Experiments are carried out with the two different NaHA products (a raw NaHA sample and a thermally degraded NaHA product) and molecular weight distribution and conformations in solution are determined. Influence of sample filtration on the change of molecular weight distribution is also discussed.