• Title/Summary/Keyword: Hydraulic analysis model

Search Result 1,137, Processing Time 0.027 seconds

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Im, Mun-Hyeok;Hwang, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.130-138
    • /
    • 2002
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absorbers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber were addressed. Practical pulse testing method was also proposed to identify the frequency response characteristics of the snubber.

On the Analysis of Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant with State-space Model and Impulse Testing (상태공간 모델과 임펄스 시험에 의한 발전소 배관지지용 유압완충기의 동특성 해석)

  • Lee, Jae-Cheon;Hwang, Tae-Yeong
    • 연구논문집
    • /
    • s.31
    • /
    • pp.89-99
    • /
    • 2001
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state-space model of 14th order to describe the dynamics of the snubber was established by Simulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers against the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which temporarily lock the control valves up, however maintain same steady-state pressures of all internal chambers in the long run. Two case studies for the analysis of the snubber are addressed. Practical pulse testing method was also proposed to identify the frequency response of the snubber.

  • PDF

Development of Simulation Model for Trajectory Tracking on Hydraulic System (유압시스템의 궤적 추종 시뮬레이션 모델 개발)

  • Choi, Jong-Hwan
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.61-66
    • /
    • 2008
  • The hydraulic system have been used much in a heavy machine which high power source is desired. In the case of the heavy press machine and the injection molding machine, the use of the hydraulic power is essential especially for increasing productivity and getting the good products. Because the hydraulic circuit is very complex and the system parameters are uncertain, the development of the simulation model for hydraulic system is not easy in the heavy machine. In this case, Many researchers have used a commercial program for analysis and development in a major field of study. In this paper, the aim is to develop the simulation model of the hydraulic system with various commercial program for trajectory tracking. And adaptive control method is applied to the simulation model for the trajectory tracking of a cylinder motion. Load on the cylinder is modeled in ADAMS program, the hydraulic circuit including pump, spool valve and cylinder is modeled in AMESim program and a controller is designed in MatLab/simulink program. The suggested model is applied for the tracking of a cylinder motion, and through computer simulation, its trajectory tracking performance is illustrated.

  • PDF

A Study on the Hydraulic System Circuit Analysis and Modeling of the Hydrostatic Tire Roller (유압 구동방식 타이어 롤러를 위한 유압 시스템 회로분석 및 모델링에 관한 연구)

  • Kim, Sang-Gyum;Park, Chun-Shic;Kim, Jung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.432-439
    • /
    • 2003
  • In this research, we are trying to develop the new hydraulic driven tire roller which is conventionally operated by mechanical transmission system. The reason why we would like to develop it is that tire roller is one of the most useful machine for the road construction site and also imported totally from overseas. In this paper, we conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. And we investigate system modeling by using DAQ system. Finally, we will design the controller, which can manage the hydraulic circuit of steering and traction mechanism system. The advent of modern high-speed computers coupled with the application of high-fidelity simulation technology can be used to create “virtual prototypes of construction equipment. Tests conducted on these virtual prototypes may be used to augment actual machine testing, thereby lowering costs and shortening time to production. So, we studied tire roller to integrate development technology. In System Analysis, We formulate hydraulic driving system model and hydraulic steering system model. Also, We integrate DAQ system to acquire experimental result in real tire roller equipment.

A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System (유압 엔진 마운트의 동특성 해석 컴퓨터 시뮬레이션 방법 연구)

  • 임홍재;최동운;이상범
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.42-48
    • /
    • 1999
  • In this paper, a computer simulation method for dynamic analysis of the hydraulic engine mount system is proposed. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow The complex stiffness of the main rubber of the hydraulic engine mount system is computed by finite element analysis for the viscoelastic materials and hydro-static elements. A numerical analysis method is presented to solve nonlinear equations of the hydraulic engine mount system. which is composed of an engine mass, fluid in inertia track and a vertical inertia force of reciprocating mass in the engine. Also. dynamic properties of the hydraulic engine mount system are analyzed in the frequency domain. Effects of the hydraulic engine mount system running over the rough road are investigated using a vehicle dynamic model. These results are compared with those of the rubber mount system.

  • PDF

Flood Hazard Map in Woo Ee Stream Basin Using Conclusive Hydraulic Routing Model (결정론적 홍수위 추적 모형을 이용한 우이천 유역의 홍수범람도 작성)

  • Moon, Young-Il;Yoon, Sun-Kwon;Kim, Jae-Hyun;Ahn, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.637-640
    • /
    • 2008
  • Flood control and river improvement works are carried out every year for the defense of the flood disaster, it is impossible to avoid the damage when there is a flood exceeding the capacity of hydraulic structures. Therefore, nonstructural counter plans such as the establishment of flood hazard maps, the flood warning systems are essential with structural counter plans. In this study, analysis of the internal inundation effect using rainfall runoff model such as PC-SWMM was applied to Woo Ee experimental stream basin. Also, the design frequency analysis for effects of the external inundation was accomplished by main parameter estimation for conclusive hydraulic routing using HEC-RAS model. Finally, inundated areas for flood hazard map were estimated at Woo Ee downstream basin according to flood frequency using HEC-GeoRAS model linked by Arc View GIS.

  • PDF

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

Reliability analysis of surface settlement by groundwater drawdown from tunnel excavation (터널굴착시 지하수위저하에 의한 지표침하의 신뢰성 해석)

  • Jang, Yeon-Soo;Kim, Hong-Seong;Park, Jeong-Yong;Park, Joon-Mo;Lee, Seong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1426-1433
    • /
    • 2005
  • In this paper, reliability analysis of surface settlement by ground water drawdown is performed using a reliability-groundwater flow numerical model. The result is compared with that of the deterministic model to evaluate the influence of the uncertainty from hydraulic conductivity in the soft ground as well as to determine the range of hydraulic conductivity of grouted ground. From the analyses, it was found that probability of failure to exceed the tolerable settlement was very high, if the hydraulic conductivity of grouted ground is decided from the deterministic flow model only. Reliability analysis which evaluates variance of hydraulic conductivity should be used together with the deterministic model for grouting design of tunnels to prevent ground water drawdown.

  • PDF

Hydraulic Characteristics and Intertidal-flat Simulation during Sea Dike Construction (방조제 축조시 수리특성 및 조간대의 모의해석)

  • 최흥식;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 1993
  • A two-dimensional numerical analysis is performed for the simulation of intertidal-flat and analysis of hydraulic characteristics during seadike construction in Sae-Man-Keum tidal basin. The shallow water equations are selected as a mathematical model and the Leendertse's ADI scheme is used as the corresponding numerical model. The simulated results of tide and current by the present model agree welt with the experimenta1 results by the hydraulic Lab. or ADC (1989). In the application of the model, the possibility of rapidly varied flow analysis and the introduction of turbulence model required for more accurate hydraulic calculation at closing gap are described. The successive simulation of flooding/drying effects by a modification of the method by Stelling et al. (1986) can easily be used for the intertidal-flat analysis during tidal reclamation.

  • PDF

A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System

  • Lee, Sang-Beom;Park, Dong-Woon;Yim, Hong-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.42-48
    • /
    • 2002
  • In this paper, a computer simulation method is presented far the dynamic analysis of a hydraulic engine mount system. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow. The complex stiffnesses of the main rubber for the hydraulic engine mount system are computed using a finite element analysis. The equations of motion considering the parameters of the hydraulic engine mount system are derived. To investigate the effects of the hydraulic engine mount system, the computer simulation running over a typical rough road is carried out using a vehicle dynamic model. These results are compared with those of the conventional rubber mount system.