• 제목/요약/키워드: Hydraulic Robot

검색결과 100건 처리시간 0.029초

로봇 조향 기반 EPS HILS 시스템의 개발 및 검증 (Development and Validation of Robot Steered EPS HILS System)

  • 홍태욱;권재준;박기홍;기시우;최상수
    • 한국정밀공학회지
    • /
    • 제30권1호
    • /
    • pp.85-95
    • /
    • 2013
  • As the conventional hydraulic power steering system in the passenger vehicles is being rapidly replaced by EPS (Electric Power Steering) system, performance evaluation of the EPS system has become an important issue in the automotive industries. But the evaluation process takes significant expertise since steering conditions in the test protocols must be implemented with high accuracy. EPS HILS (Hardware-In the-Loop Simulation) system is developed together with robot steering system in this study. Main components of EPS HILS system include: C-EPS hardware, CarSim vehicle model, and road reaction force generation system powered by servo motor. The robot steering system, operated by another servo motor, was combined with EPS HILS system to substitute for steering efforts of human driver. The road reaction force generation system and the robot steering system were carefully validated by using the data obtained from vehicle tests. An on-center handling test was conducted by using EPS HILS system combined with the robot steering system. In the result of this study, robot-steered EPS HILS system developed with its high reliability and no need of skilled driver's, can be widely adopted to evaluate any performance of EPS system.

협소 공간 작업을 위한 안전제어 시스템에 관한 연구 (A Study for Safety Work Control System in the Narrow Space)

  • 조영수;김학선;송인성;정찬세;양순용
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.62-65
    • /
    • 2010
  • Field robot represented by excavator can be applied for various working in manufacturing, construction, agriculture etc. Because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. Since the excavator operates in the hazardous working circumstance, operators exposed in harmful environment. Therefore, automation system has been investigated to protect from the harmful environment. In this paper, the method to construct the remote control system is proposed. The remote control system is consisted of a manual and auto mode. Manual mode controls a hydraulic cylinder as open loop control. and auto mode controls the end effecter of excavator using tracking control system. The efficiency of remote control system was evaluated through the field test.

  • PDF

Automatic Assembly Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators

  • Kyoungkwan Ahn;Lee, Byung-Ryong;Yang, Soon-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1633-1642
    • /
    • 2002
  • Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of the typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (linear vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN is generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

원격해체 작업을 위한 유압 시스템의 SPO 기반 반력 추정 및 힘 반향 양방향 원격제어 (SPO based Reaction Force Estimation and Force Reflection Bilateral Control of Cylinder for Tele-Dismantling)

  • 차금강;윤성민;이민철
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2017
  • For dismantling heavy structure under special environment in radioactivity, there are many problems which should be tele-operated and feedback a cutting force for cutting a thick structure such as concrete. When operator dismantles a thick heavy concrete structure, it is in sufficient to judge whether robot is contacting or not with environment by using only vision information. To overcome this problem, force feedback and impedance model based bilateral control are introduced. The sliding mode control with sliding perturbation observer (SMCSPO) based bilateral control is applied and surveyed to a single rod hydraulic cylinder in this paper. The sliding mode control is used for robustness against a disturbance. The sliding perturbation observer is used for estimation of a reaction force such as cutting force. The bilateral control is executed using the information of reaction force estimated by SMCSPO. The contribution of this paper is that the estimation method and bilateral control of the single rod hydraulic cylinder are introduced and discussed by experiment.

Development of an Exclusive Sensor for Detecting Positions of Field Robot Arms

  • Kim, Jong-Hwa;Yang, Yong-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.51.4-51
    • /
    • 2001
  • In order to comprise a basic closed-loop control system for a field robot it is necessary to detect the piston rod stroke of a hydraulic cylinder. There are mary conventional type sensors which can detect the displacement of cylinders. However, they cannot reveal the original performance normally or the cannot be applied at all where the operating circumstance of cylinders is beyond specifications of sensors. In this paper, an exclusive method for detecting the piston rod stroke is suggested, which adopts a remote detecting technique using optical fiber sensors. Several experiments using the prototype are executed for verifying the effectiveness of the suggested method and the possibility of the accurate detection of stroke.

  • PDF

컨테이너 수평이송을 위한 이송로봇 개발 (A Development of Transfer Robot for Container Loading/unloading Horizontally)

  • 이영진;한동섭;조현철;한근조;구경완;이권순
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.221-229
    • /
    • 2011
  • Recently, intermodal transportation systems are significantly considered as enhanced technique or future railroad logistics. These are aimed for particularly reducing complicated job process in the railroad based transportation and relevant logistic cost in economic viewpoint. In this paper we suggest a horizontal transfer system using hydro-motor and hydro-cylinder for intermodal transportation system. This system can assist to transfer the containers horizontally for train logistics automations.

파일럿 집광로봇 박스형 압력보상용기 구조설계식 (Structural Design Equation for a Box-shape Pressure Compensated Chamber of Pilot Mining Robot)

  • 이민욱;홍섭;임우철;이태희;최종수
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.66-73
    • /
    • 2012
  • A pressure compensated chamber of a pilot mining robot isolates and protects an electrical-electronic system from the ambient highly pressured water. Since the inner pressure of the chamber is compensated with outer water pressure using hydraulic oil and pressure compensator, there exists a pressure difference, less than 1 bar, between outer and inner surface. The structural safety of the chamber is obtained relatively easier than the canister type which inner pressure is kept as the atmospheric pressure. However, due to the adoption of box shape for space efficiency and usage of the transparent engineering plastic viewport for checking inner circumstance, the viewport can be largely deformed. This large deformation can cause an additional tensile force, called the prying force, to the bolt-flange connection parts of the viewport. In this paper, we suggest the structural design equation considering the prying action for designing the structure of a box-shape pressure compensated chamber.

Simscape 기반 6자유도 필드로봇 시뮬레이션 모델에 관한 연구 (A Study on Simscape based 6DOF Field Robot Simulation Model)

  • 최성웅;곽경신;레쾅호안;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권2호
    • /
    • pp.1-10
    • /
    • 2022
  • Field robots operate in various areas, including construction, agriculture, forestry and manufacturing. Typical tasks of field robots used in various areas include excavation, flattening, and demolition. Such tasks are often accomplished in narrow alleys or indoors. In the case of field robots, there is a limit to working in a small space. Thus, to compensate for these shortcomings, many field robots equipped with Tiltrotators have recently been observed. The advantages of Tiltrotator are improved task efficiency and reduced operating time by reducing unnecessary behavior. We need simulation models that can improve the ability of new people to work and simulate tasks in advance. Thus, in this paper, we developed a simscape-based simulation model and modeling of 6DOF systems for field robots equipped with Tiltrotator. Dynamic modeling of field robot 3D models using Simcape multibody and hydraulic systems of field robots using Simcape Hydraulics were modeled. We applied a PID controller to create a control system that operates along the input angle. Simulation results show that errors occur when comparing input and output angles, but overall, they move along input angles.

항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구 (Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction)

  • 김태성;김치효;이진형;이민기
    • 한국항해항만학회지
    • /
    • 제42권3호
    • /
    • pp.237-244
    • /
    • 2018
  • 수중에서 로봇으로 사석 고르기 작업을 실시할 경우 로봇 주위의 지형 정보를 실시간으로 제공해야 원격조종이 가능하다. 현 위치로부터 주변지형의 높낮이를 보여줘야 운전자가 작업 계획을 수립하고, 전복과 같은 사고도 예방할 수 있다. 지금까지 지형인식은 멀티 빔 소나에 의해 이뤄졌는데 이는 작업 전후의 품질을 평가하는 용도만 사용되었지 원격조종에서 필요한 실시간 정보로는 사용될 수 없었다. 본 연구는 수중 사석 고르기 작업을 위한 실시간 지형인식 방법을 개발한다. 버킷이 지면을 누를 때 전달되는 힘을 측정해 접촉여부를 판단하고, 실린더의 길이를 읽어 접촉위치를 계산한다. 버킷의 위치제어를 위해 가변 뱅뱅제어 알고리즘을 적용하고 숙련된 굴삭기 운전자의 작업패턴을 프로그램화해 지형인식, 긁기, 밀기, 전진 등의 작업을 자동으로 수행하도록 한다. 개발된 방법은 로봇 몸체로부터 버킷의 거리에 따라 3차원 격자 지형을 상대적으로 보여줌으로써 작업자가 쉽게 지형을 인식하고 지형에 따라 작업계획을 세우도록 한다.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.