• Title/Summary/Keyword: Hydraulic Loss

Search Result 397, Processing Time 0.03 seconds

Stability Analysis of the Concave Zone in a Slope Considering Rainfall (강우를 고려한 사면내 요부(凹部)에서의 안정성 해석)

  • Sagong Myung;Lim Kyoung-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.77-86
    • /
    • 2005
  • Since slope sliding and loss of railway triggered by a rainfall produce instability in the operation of trains, a proper method to estimate the slope stability considering rainfall Is required. from the field study, sliding induced by rainfall depends on the engineering properties of soils, three dimensional aspect of the slope, rainfall intensity and geological conditions of the soil layers. In this study, among various types of sliding, slope Instability caused by the surface runoff water at the concave zones in a slope is investigated. The depth of runoff water is calculated by using the Rational method and Manning equation. The occurrence of runoff water is evaluated by a comparison between the calculated infiltration rate and rainfall intensity. Pressure heads which can be calculated from the modified Iverson model are used to calculate the factor of safety along the vertical depth of the slope. The modified Iverson model considers the depth of runoff water, thus the maximum hydraulic gradient along the depth of slope is greater than one.

An experimental study on influence of wearing seal groove shape to performance of the pump (마모 실 홈 형상이 펌프 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.285-291
    • /
    • 2014
  • This paper is related to the improvement of efficiency for high performance centrifugal pumps by reducing leakage loss, which is achieved by applying the grooved seal as a non-contact seal to the pumps. Various combinations of grooved seal types, including the spiral and the parallel groove in the rotor and/or in the stator, were tested by the experiment. And the corresponding hydraulic performance and the magnitude of axial thrust were measured and calculated for ten cases. From the results, the type with the spiral groove(spiral angle : $0.98^{\circ}$) in both the rotor and the stator was found to be most effective. In this case, the head and the efficiency were improved from the original design by 2.1% and 2.3% respectively at design capacity($340m^3/h$), and the axial thrust was decreased by 10%.

Study on the Lateral Dynamic Crush Strength of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly (경수로 핵연료집합체 지지격자체의 횡방향 충격강도 연구)

  • Song, Kee-Nam;Lee, Sang-Hoon;Lee, Soo-Bum;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1175-1183
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components in a Light Water Reactor(LWR) nuclear fuel assembly. In the case of the Zircaloy spacer grid assembly, the primary design consideration is to ensure that lateral dynamic crush strength of the spacer grid assembly is sufficient to resist design basis loads and thereby prevent seismic accidents, without a significant increase in the hydraulic head loss for the reactor coolant in the reactor core. In this study, factors affecting the lateral dynamic crush strength of a spacer grid assembly were analyzed by performing lateral dynamic crush tests and finite element analyses. Further, an effective and economical method to enhance the lateral dynamic crush strength of the spacer grid assembly is proposed.

Assessment Manual for Optimization of Structural Scale of Stone and Gabion at the Final Closure of Sea Dike -II. Application at the actual site- (방조제 체절시 사석 및 돌망태의 적정규모 산정을 위한 매뉴얼 개발 -II. 현장적용-)

  • Song, Hyun-Gu;Kim, Jong-Kyu;Hwang, In-Chan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.145-153
    • /
    • 2009
  • This research utilized the manual to calculate the structural scale of stone and gabion, which was developed through comparison and verification of the results drawn by hydraulic model experiment and existing empirical formula. Appropriate structural scale of stone according to the construction site when the critical velocity was exceeded, utilizing the previously expected and recorded data on current velocity per day and per hour during the final closure period for Saemangeum sea dike. Also, the scale of rocks was presented, considering the altercation in water depth according to the construction. The developed manual offered appropriate rate of mixed use of stone and gabion that suits various flow velocities, which will minimize any loss of stone-gabion and contribute to successful final closure, and proved the utility and application of the manual.

The Treatment of Slurry-type Swine Waste using UASB Reactor (UASB 공정에 의한 슬러리형 돈사폐수의 처리)

  • Won, Chul-Hee;Kim, Byoung-Ug;Han, Dong-Joon;Rim, Jay-Myoung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.583-588
    • /
    • 2004
  • This research examined the treatment efficiency and methane production rate in treating slurry-type swine waste using UASB (upflow anaerobic sludge blanket) reactor. The UASB reactor was operated at an organics volumetric loading rate (VLR) of $2.6-15.7kgCOD/m^3/day$. A stepwise increase of the VLR resulted in a temporary deterioration in the COD removal rate in UASB reactor but recovered quickly. The COD removal rate were 65-70% for VLR up to $5 kgCOD/m^3/day$. When organics VLR was $10kgCOD/m^3/day$, the COD removal rate decreased sharply and there was loss of 17.537g of the seeding biomass due to sludge washout. This result indicated that the UASB system cannot be adapted to more than $10kgCOD/m^3/day$ of VLR. As the organic load increased from 2.6 to $15.7kgCOD/m^3/d$, the biogas production rate varied from 3.2 to 10.8 L/d and the methane conversion rate of the organic matter varied from 0.30 to $0.23m^3CH_4/kg\;COD_{removed}$. The methane content showed the range of 70.1-81.5% during the experimental period. The volatile solids (VS) removal efficiency was similar at the low VLR (< $5 kgCOD/m^3/day$), but it decreased sharply at the high VLR (> $5 kgCOD/m^3/day$). The VS reduction rate was, moreover, large those of COD. The result shows that hydraulic retention time above 2 days is essential in case of treating wastewater containing 1% of solids.

A Study on a Perforated Breakwater (유공방파제에 대한 연구)

  • Lee, Yong-Gyu;Pyeon, Jong-Geun;An, Su-Han
    • Water for future
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 1986
  • Both hydraulic and dynamic characteristics of a single perforated wall are studied theoretically and experimentally. Theoretically, the effect of evanescent modes on wave force acting on a single perated wall is studied by use of the Horiguchi theory. The wave force on the perforated wall is presented to be insensitive to evanescent modes. According to experimental study, The larger perforation ratio(${\gamma}$) grows, the weaker the wave force on the wall becomes sensitively. And in the small value of l/D (ratio of wall thickness(l) to hole diameter(D)) where the holes on the wall are regarded as orifice, the wave force on the wall is insensitive to the variation of l/D. Energy loss coefficient f is estimated at 1.0 in this small value of l/D by use of Horiguchi theory. But in the large value of l/D where the holes are regarded as pipe, the wave force on the wall is relatively sensitive to the variation of l/D and f is estimated at 1.5 by use of Horiguchi theory.

  • PDF

History and Current Situation of River Management using Physical Habitat Models in the U.S. and Japan

  • Sekine, Masahiko
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • History of Instream Flow Incremental Methodology (IFIM) Following the large reservoir and water development era of the mid-twentieth century in North America, resource agencies became concerned over the loss of many miles of riverine fish and wildlife resources in the arid western United States. Consequently, several western states began issuing rules for protecting existing stream resources from future depletions caused by accelerated water development. Many assessment methods appeared during the 1960's and early 1970's. These techniques were based on hydrologic analysis of the water supply and hydraulic considerations of critical stream channel segments, coupled with empirical observations of habitat quality and an understanding of riverine fish ecology. Following enactment of the National Environmental Policy Act (NEPA) of 1970, attention was shifted from minimum flows to the evaluation of alternative designs and operations of federally funded water projects. Methods capable of quantifying the effect of incremental changes in stream flow to evaluate a series of possible alternative development schemes were needed. This need led to the development of habitat versus discharge functions developed from life stage-specific relations for selected species, that is, fish passage, spawning, and rearing habitat versus flow for trout or salmon. During the late 1970's and early 1980's, an era of small hydropower development began. Hundreds of proposed hydropower sites in the Pacific Northwest and New England regions of the United States came under intensive examination by state and federal fishery management interests. During this transition period from evaluating large federal reservoirs to evaluating license applications for small hydropower, the Instream Flow Incremental Methodology (IFIM) was developed under the guidance of the U.S. Fish and Wildlife Service (USFWS).

Assessments of Hydraulic Properties of Geotextiles with Fiber Composition Factors (섬유 구성인자에 의한 지오텍스타일의 수리학적 특성 평가)

  • Jeon, Han-Yong;Chung, Jin-Gyo;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.47-55
    • /
    • 2003
  • The effects of fiber composition factors of 14 geotextiles which are thickness, porosity, fiber length and diameter etc. on the transmissivity were examined and in-plane permeability of geotextiles under thickness change, transmissivity, confined load were analyzed by the constitutive equations. And the effects of laminar structure on the permittivity of laminar geotextile composites which were manufactured with fiber packing densities were assessed. Transmissivities were increased with thickness of geotextiles and in-plane permeability coefficients were increased with porosity and fiber diameter. The effects of porosity were decreased with normal stress and slightly increased with fiber length. Transmissivities were increased with fiber diameter and showed same tendensy for the same fiber length. Permittivities of laminar geotextile composites were influenced by the waterhead loss in the inner interface and the connection shape of these composites to water path was interpreted as bell mouth type or soft flux pipe type.

  • PDF

Fuel-Side Cold-Flow Test and Pressure Drop Analysis on Technology Demonstration Model of 75 ton-class Regeneratively-Cooled Combustion Chamber (75톤급 재생냉각 연소기 기술검증시제 연료 수류시험 및 차압 해석)

  • Ahn, Kyubok;Kim, Jong-Gyu;Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Fuel-side cold-flow tests were performed on the technology demonstration model of a 75 ton-class liquid rocket engine combustion chamber for the first stage of the Korea space launch vehicle II. Pressure drop in the cooling channels of the combustion chamber was measured by changing fuel mass flow rate through a pressure regulating system. Pressure drop in each segment of the chamber could be obtained and a lot of pressure drop was caused by high flow velocity in the nozzle throat segment. The accuracy of a hydraulic analysis method for calculating a pressure loss in cooling channels could be verified by applying it to the cold-flow test conditions.

Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term (비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.