• Title/Summary/Keyword: Hydraulic Hybrid

Search Result 156, Processing Time 0.02 seconds

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

Active Force Control of Electro-Hydraulic Hybrid Load Simulator using Quantitative Feedback Theory (QFT를 이용한 전기유압 하이브리드 부하 시뮬레이터의 능동 힘제어)

  • Yoon, Joo-Hyeon;Ahn, Kyoung-Kwan;Truong, Dinh Quang;Jo, Woo-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • Today, reduction of $CO_2$ exhaustion gas for global-warming prevention becomes important issues in all industrial fields. Hydraulic systems have been widely used in industrial applications due to high power density and so on. However hydraulic pump is always being operated by engine or electric motor in the conventional hydraulic system. Therefore most of the conventional hydraulic system is not efficient system. Recently, an electro-hydraulic hybrid system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. In the electro-hydraulic hybrid system, hydraulic pump is operated by electric motor only when hydraulic power is needed. Therefore the electro-hydraulic system can reduce the energy consumption drastically when compared to the conventional hydraulic systems. This paper presents a new kind of hydraulic load simulator which is composed of electro-hydraulic hybrid system. Disturbances in the real working condition make the control performance decrease or go bad. QFT controller is designed to eliminate or reduce the disturbance and improve the control performance of the electro-hydraulic load simulator. Experimental results show that the proposed controller is verified to apply for electro-hydraulic hybrid system with varied external disturbances.

Review of Energy Saving Technology of Hybrid Construction Machine

  • Yu, YingXiao;Jeong, Eunjin;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • This study focuses on the energy saving of construction machinery, especially excavators and wheel loaders coming on a backdrop of energy shortage and environment pollution. Due to the problem of the low energy efficiency and the pollution of conventional hydraulic excavators, hybrid hydraulic excavators were developed to solve this challenge. Firstly, this paper discusses the different configurations of the hybrid hydraulic excavator and recent research trend of hybrid hydraulic excavator is reviewed. Secondly, the productions and research of the construction machine companies were analyzed and finally, the future challenges of hybrid technology to the hydraulic excavator were discussed.

OPTIMAL TORQUE MANAGEMENT STRATEGY FOR A PARALLEL HYDRAULIC HYBRID VEHICLE

  • Sun, H.;Jiang, J.H.;Wang, X.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.791-798
    • /
    • 2007
  • The hydraulic hybrid vehicle(HHV) is an application of hydrostatic transmission technology to improve vehicle fuel economy and emissions. A relatively lower energy density of hydraulic accumulator and complicated coordinating operations between two power sources require a special energy management strategy to maximize the fuel saving potential. This paper presents a new type of configuration for parallel HHV to minimize the disadvantages of the hydraulic accumulator, as well as a methodology for developing an energy management strategy tailored specially for PHHV. Based on an analysis of the optimal energy distribution between two power sources over a representative urban driving cycle with a Dynamic Programming(DP) algorithm, a fuzzy-based optimal torque management strategy is designed and developed to control the torque distribution. Simulation results demonstrates that the optimal torque management strategy maximizes the advantages of this hybrid type of configuration, and the high power density characteristics of hydraulic technology effectively improve the robustness of the energy management strategy and fuel economy of the PHHV.

Fuzzy-based Hybrid Fuzzy-Sliding Mode Controller for the Speed Control of a Hydraulic Inverter Controller (유압식 인버터 제어기의 속도제어를 위한 퍼지기반 하이브리드 슬라이딩모드 제어기 설계)

  • 한권상;최병욱;안현식;김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.218-226
    • /
    • 2003
  • Due to the friction characteristics of pump, cylinder packing and passenger car, in the elevation system actuated with hydraulic inverter, there exist dead zones. which cannot be controlled by a PID controller. To overcome the drawbacks, in this paper, we propose a new hybrid fuzzy-sliding mode control scheme, which controls the controller output between a sliding mode control output and a PID control output by fuzzy control method. The proposed hybrid control scheme achieves an improved control performance by using both controllers. We first propose a design method of the hybrid controller far a hydraulic system controlled by inverters, then propose a design method of a hybrid fuzzy-sliding mode centre] scheme. The effectiveness of the proposed control scheme is shown by simulation results, in which the proposed hybrid control method yields better control performance then the PID controlled scheme, not only in the zero-crossing speed region but also in the overall control region including steady-state region.

A Study on the Hydraulic Pump/Motor Control in the Flywheel Hybrid Vehicle

  • Oh, Boem-Sueng;Ahn, Kyoung-Kwan;Cho, Yong-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.307-311
    • /
    • 2004
  • In this study, a novel hybrid vehicle is proposed. The vehicle has a flywheel-engine hybrid system. Flywheels are more effective as energy charge systems than electric batteries in a respect of output power density. However, transmissions to effectively drive flywheels are very complex systems such as CVTs (Continuously Variable Transmissions). In the proposed hybrid vehicle, Constant Pressure System is employed, which is hydraulic power transmission. Using Constant Pressure Systems, hydraulic CVTs are easily realized with variable displacement pumps/motors. In this paper, firstly, the proposed flywheel hybrid vehicle making use of Constant Pressure System is described. Secondly, fuel consumption characteristics of the flywheel hybrid vehicle are experimentally examined with the stationary test facility, which employs a flywheel as a load emulating vehicle inertia. Finally, the experimental results and discussions are described. Fuel consumption of 26km/L is expected for 10 mode driving schedule with vehicle mass of 1500kg.

  • PDF

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

A Study on the Energy Saving Hydraulic Control System using Variable Displacement Hydraulic Pump/Motor (가변 유압 펌프/모터를 이용한 유압 제어 시스템의 에너지 절감에 관한 연구)

  • 조용래;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.100-108
    • /
    • 2003
  • This paper proposes a flywheel hybrid vehicle to solve the energy crisis problem by the exhaustion of a fossil fuel and air pollution for the conservation of environment. The proposed flywheel hybrid vehicle is composed of an accumulator and a flywheel as the energy generation and storage component and three variable displacement hydraulic pump/motors as the energy transfer devices. Flywheel has the characteristics of high energy density and easy energy absorption and consumption. The effectiveness of the energy-saving of the proposed flywheel hybrid vehicle is verified by simulation using Matlab/simulink. First of ail, analytical modeling for the flywheel hybrid vehicle is presented and simulations are performed based on the experimental efficiency data of a variable displacement pump/motor. The results of the simulation show that the effect of energy savings is realized by the proposed hybrid vehicle in 3 different city driving patterns.

Parameter Identification Using Hybrid Neural-Genetic Algorithm in Electro-Hydraulic Servo System (신경망-유전자 알고리즘을 이용한 전기${\cdot}$유압 서보시스템의 파라미터 식별)

  • 곽동훈;정봉호;이춘태;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.192-199
    • /
    • 2002
  • This paper demonstrates that hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system Identification of electro-hydraulic servo system. This algorithm are consist of a recurrent incremental credit assignment (ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. We manufactured electro-hydraulic servo system and the hybrid neural-genetic multimodel parameter estimation algorithm is applied to the task to find the parameter values(mass, damping coefficient, bulk modulus, spring coefficient) which minimize total square error.

Parameter Identification of an Electro-Hydraulic Servo System Using a Modified Hybrid Neural-Genetic Algorithm (전기.유압 서보시스템의 수정된 신경망-유전자 알고리즘에 의한 파라미터 식별)

  • 곽동훈;이춘태;정봉호;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.442-447
    • /
    • 2003
  • This paper demonstrates that a modified hybrid neural-genetic multimodel parameter estimation algorithm can be applied to structured system identification of an electro-hydraulic servo system. This algorithm is consists of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. The modified hybrid neural-genetic multimodel parameter estimation algorithm is applied to an electro-hydraulic servo system the task to find the parameter values such as mass, damping coefficient, bulk modulus, spring coefficient and disturbance, which minimizes the total square error.