DOI QR코드

DOI QR Code

Review of Energy Saving Technology of Hybrid Construction Machine

  • Yu, YingXiao (Department of Mechanical Engineering, University of Ulsan) ;
  • Jeong, Eunjin (Department of Mechanical Engineering, University of Ulsan) ;
  • Ahn, Kyoung Kwan (School of Mechanical Engineering, University of Ulsan)
  • Received : 2018.11.26
  • Accepted : 2018.11.29
  • Published : 2018.12.01

Abstract

This study focuses on the energy saving of construction machinery, especially excavators and wheel loaders coming on a backdrop of energy shortage and environment pollution. Due to the problem of the low energy efficiency and the pollution of conventional hydraulic excavators, hybrid hydraulic excavators were developed to solve this challenge. Firstly, this paper discusses the different configurations of the hybrid hydraulic excavator and recent research trend of hybrid hydraulic excavator is reviewed. Secondly, the productions and research of the construction machine companies were analyzed and finally, the future challenges of hybrid technology to the hydraulic excavator were discussed.

Keywords

OGSSB4_2018_v15n4_91_f0001.png 이미지

Fig. 1 Configuration of series hybrid excavator

OGSSB4_2018_v15n4_91_f0002.png 이미지

Fig. 2 Configuration of parallel hybrid excavator

OGSSB4_2018_v15n4_91_f0003.png 이미지

Fig. 3 The parallel hybrid hydraulic excavator research by Qing Xiao.

OGSSB4_2018_v15n4_91_f0004.png 이미지

Fig. 4 Energy-saving pressure-compensated scheme for hybrid hydraulic excavators

OGSSB4_2018_v15n4_91_f0005.png 이미지

Fig. 5 The hydraulic excavator with potential energy regeneration system

OGSSB4_2018_v15n4_91_f0006.png 이미지

Fig. 6 One example of a hybrid hydraulic excavator

OGSSB4_2018_v15n4_91_f0007.png 이미지

Fig. 7 Configuration of CPR system

OGSSB4_2018_v15n4_91_f0008.png 이미지

Fig. 8 Hydraulic hybrid system research by Sun Hui.

OGSSB4_2018_v15n4_91_f0009.png 이미지

Fig. 9 Configuration of STEAM system

OGSSB4_2018_v15n4_91_f0010.png 이미지

Fig. 10 The hydraulic hybrid system of using hydraulic transformer

OGSSB4_2018_v15n4_91_f0011.png 이미지

Fig. 11 The hybrid hydraulic excavator of Komatsu

OGSSB4_2018_v15n4_91_f0012.png 이미지

Fig. 12 The hybrid hydraulic excavator of Kobe Steel

OGSSB4_2018_v15n4_91_f0013.png 이미지

Fig. 13 ZX200 hybrid excavator of Hitachi

References

  1. Z. Quan, L. Quan and J. Zhang, "Review of energy efficient direct pump controlled cylinder electro-hydraulic technology", Automation in Construction, Vol.35, pp.336-346, 2014.
  2. S. R. Lee and Y. S. Hong, "Synchronous Control of an Asymmetrical Dual Redundant EHA", Journal of Drive and Control, Vol.13, No.2, pp.1-9, 2016. https://doi.org/10.7839/KSFC.2016.13.2.001
  3. S. R. Lee and Y. S. Hong, "Control-performance Improvement of Dual EHAs", Journal of Drive and Control, Vol.13, No.3, pp.32-38, 2016. https://doi.org/10.7839/KSFC.2016.13.3.032
  4. J. S. Joh, "A Review on New Non-hybrid Technologies to Improve Energy Efficiency of Construction Machineries", Journal of Drive and Control, Vol.13, No.3, pp.53-66, 2016. https://doi.org/10.7839/KSFC.2016.13.3.053
  5. J. Y. Huh, "Energy Saving in Boom Motion of Excavators using IMV", Journal of Drive and Control, Vol.14, No.3, pp.1-7, 2017. https://doi.org/10.7839/KSFC.2017.14.3.001
  6. H. G. Park, S. A. Nahian and K. K. Anh, "A Study on Energy Saving of IMV Circuit Using Pressure Feedback", Journal of Drive and Control, Vol.13, No.4, pp.31-44, 2016. https://doi.org/10.7839/KSFC.2016.13.4.031
  7. D. Das, P. Chowdhury, B. N. M. Truong and K. K. Ahn, "A Novel Energy Recuperation System for Hybrid Excavator using Hybrid Actuator", 15th International Conference on Control, Automation and Systems, pp. 1930-1935, 2015.
  8. T. A. Minav, L. I. E. Laurila and J. J. Pyrhonen, "Analysis of electro-hydraulic lifting system's energy efficiency with direct electric drive pump control", Automation in Construction, Vol.30, pp.144-150, 2013. https://doi.org/10.1016/j.autcon.2012.11.009
  9. H. Sun, L. F. Yang, J. Q. Jing, and Y. L. Luo, "Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles", Energy Conversion and Management, Vol.52, No.1, pp.668-674, 2011. https://doi.org/10.1016/j.enconman.2010.07.045
  10. K. K. Ahn, T. H. Ho and Q. T. Dinh, "A study on energy saving potential of hydraulic control system using switching type closed loop constant pressure system", Proceedings of the JFPS International Symposium on Fluid Power, pp.317-322, 2008.
  11. K. K. Ahn and Q. T. Dihn, "Development of energy saving hybrid excavator using hybrid actuator", Proceedings of the Seventh International Conference on Fluid Power Transmission and Control (ICFP 2009), pp. 205-209, 2009.
  12. T. H. Ho and K. K. Ahn, "Saving energy control of cylinder drive using hydraulic transformer combined with an assisted hydraulic circuit", ICCAS-SICE, pp. 2115-2120, 2009.
  13. K. K. Ahn and Y. Ji, "Development of Hybrid Excavator for Regeneration of Boom Potential Energy", Journal of Drive and Control, Vol.7, pp.25-32, 2010.
  14. T. Lin, W. Huang, H. Ren, S. Fu and Q. Liu, "New compound energy regeneration system and control strategy for hybrid hydraulic excavator", Automation in Construction, Vol. 68, pp.11-20, 2016. https://doi.org/10.1016/j.autcon.2016.03.016
  15. B. B. Sarlioglu, C. T. Morris and D. Han and S. Li, "Driving Toward Accessibility: A Review of Technological Improvements for Electric Machines, Power Electronics, and Batteries for Electric and Hybrid Vehicles", IEEE Industry Applications Magazine, Vol.23, No.1, pp.14-25, 2017. https://doi.org/10.1109/MIAS.2016.2600739
  16. Y. Gou, "Research on Electric Vehicle Regenerative Braking System and Energy Recovery", International Journal of Hybrid Information Technology, Vol.9, No.1, pp.81-90, 2016. https://doi.org/10.14257/ijhit.2016.9.1.08
  17. T. Lin, Q. Wang and B. Hu and Wen Gong, "Research on the energy regeneration systems for hybrid hydraulic excavators", Automation in Construction, Vol. 19, No. 8, pp1016-1026, 2010. https://doi.org/10.1016/j.autcon.2010.08.002
  18. X. Zeng, N. Yanga, Y. Peng, Y. Zhang and J. Wang, "Research on energy saving control strategy of parallel hybrid loader", Automation in Construction, Vol. 38, pp.100-108, 2014. https://doi.org/10.1016/j.autcon.2013.11.007
  19. D. T. Jeong, C. Kim, J. H. Kim, J. H. Suh and M. L. Jin., "Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems", Journal of Drive and Control, Vol.14, No.4, pp.51-60, 2017. https://doi.org/10.7839/KSFC.2017.14.4.051
  20. H. I. Yoon, K. K. Ahn and T.Q. Dinh, "A study on an energy saving electro-hydraulic excavator", ICROS-SICE International Joint Conference, 2009.
  21. G. H. Jun and K. K. Ahn, "Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator", Journal of Drive and Control, Vol.14, No.4, pp.61-70, 2017. https://doi.org/10.7839/KSFC.2017.14.4.061
  22. M. H. Bae, T. Y. Bae and S. K. Choi, "The Critical Speed Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission", Journal of Drive and Control, Vol.14, No.4, pp.71-78, 2017. https://doi.org/10.7839/KSFC.2017.14.4.071
  23. T. Lin, Q. Wang, B. Hu and W. Gong, "Development of hybrid powered hydraulic construction machinery", Automation in Construction, Vol.19, No.1, pp.11-19, 2010. https://doi.org/10.1016/j.autcon.2009.09.005
  24. J. I. Yoon, D. Q. Truong and K. K. Ahn, "Development of an energy saving electric excavator", the 8th JFPS International Symposium on Fluid Power, pp.426-432, 2011.
  25. T. Wang and Q. Wang, "An Energy-Saving Pressure-Compensated Hydraulic System with Electrical Approach", IEEE/ASME Transactions on mechatronics, Vol.19, No.2, pp.270-578, 2014.
  26. J. I. Yoon, D. Q. Truong and K. K. Ahn, "A generation step for an electric excavator with a control strategy and verifications of energy consumption", International Journal of Precision Engineering and Manufacturing, Vol.14, No.5, pp.755-766, 2013. https://doi.org/10.1007/s12541-013-0099-6
  27. I. Cires and V. M. Nani, "Stability control for a huge excavator for surface excavation", Applied Mathematical Modelling, Vol.40, No.1, pp.388-397, 2016. https://doi.org/10.1016/j.apm.2015.04.056
  28. T. A. Minav, L. I. E. Larurial and J. J. Pyrhonen, "Analysis of electro-hydraulic lifting system's energy efficiency with direct electric drive pump control", Automation in Construction, Vol.30, pp.144-150, 2013. https://doi.org/10.1016/j.autcon.2012.11.009
  29. P. Casoli, A. Gambarotta, N. Pompini and L. Ricco, "Hybridization methodology based on DP algorithm for hydraulic mobile machinery- Application to middle size excavator", Automation in Construction, Vol.61, pp.42-57, 2016. https://doi.org/10.1016/j.autcon.2015.09.012
  30. M. Chen and D. Zhao, "The gravitational potential energy regeneration system with closed-circuit of boom of hydraulic excavator", Mechanical System and Signal Processing, Vol.82, pp.178-192, 2016.
  31. J. Jiang and C. Liu. "Modeling and simulation for Pressure Character of the Plate-Inclined Axial Piston Type Hydraulic Transformer", 2010 IEEE International conference on Information and Automation June 20-23, pp.245-249, 2010.
  32. T. H. Ho and K. K. Ahn, "Saving Energy Control of Cylinder Drive Using Hydraulic Transformer Combined with An Assisted Hydraulic Circuit", ICROS-SICE International Joint Conference 2009, pp.2115-2120. 2009.
  33. B. N. M. Truong, D. Q. Truong, S. Y. Lee and K. K. Ahn, "Study on Energy Regeneration System for Hybrid Hydraulic Excavator", 2015 International Conference on Fluid Power and Mechatronics, pp.1349-1354, 2015. 2015.
  34. 1126 Z. Faye, "Assembly Simulation Research for Hydraulic Transformer with Virtual Manufacturing Technology", Technology and Innovation Conference, 2009.
  35. H. T. Hung and K. K. Ahn, "A Study on the Position Control of Hydraulic Cylinder Driven by Hydraulic Transformer Using Disturbance Observer", International Conference on Control, Automation and System, pp.2634-2639, 2008.
  36. K. S. Oh, K. S. Yi, J. Seo, Y. Kim and G. Lee, "Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting", Journal of Drive and Control, Vol.14, No.3, pp.40-49, 2017. https://doi.org/10.7839/KSFC.2017.14.3.040
  37. J. H. Kim and Y. S. Hong, "Comparison of Force Control Characteristics between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (I): Tracking Performance", Journal of Drive and Control, Vol.14, No.4, pp.9-16, 2017. https://doi.org/10.7839/KSFC.2017.14.4.009
  38. J. H. Kim and Y. S. Hong, "Comparison of Force Control Characteristics between Double-Rod and Single-Rod Type Electro-Hydrostatic Actuators (II): Back-Drivability", Journal of Drive and Control, Vol.14, No.4, pp.17-22, 2017. https://doi.org/10.7839/KSFC.2017.14.4.017
  39. T. W. Ha et al., "Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control", Journal of Drive and Control, Vol.14, No.4, pp.37-44, 2017. https://doi.org/10.7839/KSFC.2017.14.4.037
  40. G. H. Jun and K. K. Ahn, "Extended-State-Observer-Based Nonlinear Servo Control of An Electro-Hydrostatic Actuator", Journal of Drive and Control, Vol.14, No.4, pp.61-70, 2017. https://doi.org/10.7839/KSFC.2017.14.4.061
  41. M. H. Bae, T. Y. Bae and S. K. Choi, "The Critical Speed Analysis of Gear Train for Hydro- Mechanical Continuously Variable Transmission", Journal of Drive and Control, Vol.14, No.4, pp.71-78, 2017. https://doi.org/10.7839/KSFC.2017.14.4.071
  42. D.Y. Wang, C. Guan, S.X. Pan, M. J. Zhang, and X. Lin, "Performance analysis of hydraulic excavator powertrain hybridization", Automation in Construction, Vol.18, No.3, pp.249-257, 2009. https://doi.org/10.1016/j.autcon.2008.10.001
  43. R. M. Schupbach et al, "Design methodology of a combined battery - ultracapacitor energy storage unit for vehicle power management", Power Electronics Specialist Conference, Vol.1, pp.88-93, 2003.
  44. Q. Xiao, Q. F. Wang, and Y. T. Zhang, "Control strategies of power system in hybrid hydraulic excavator," Automation in Construction, Vol.17, No.4, pp. 361-367, 2008. https://doi.org/10.1016/j.autcon.2007.05.014
  45. T. Wang and Q. Wang, "Efficiency analysis and evaluation of energy-saving pressure-compensated circuit for hybrid hydraulic excavator," Automation in Construction, Vol.47, pp.62-68, 2010.
  46. T. Wang, Q. F. Wang, and T. L. Lin. "Improvement of boom control performance for hybrid hydraulic excavator with potential energy recovery," Automation in Construction, Vol.30, pp.161-169, 2013. https://doi.org/10.1016/j.autcon.2012.11.034
  47. Y. X. Yu et al., "A study on the energy regeneration system of boom for hybrid hydraulic excavator," 15th International Conference on Control, Automation and System, pp.1910-1914, 2015.
  48. W. Shen, J. Jiang, X. Su and H. R. Karimi. "Control strategy analysis of the hydraulic hybrid excavator," Journal of the Franklin Institute, pp.541-561, 2015.
  49. S. Hui and J. Junqing. "Research on the system configuration and energy control strategy for parallel hydraulic hybrid loader," Automation in Construction, Vol.19, No.2, pp.213-220, 2010. https://doi.org/10.1016/j.autcon.2009.10.006
  50. RWTH Aachen University, "STEAM-the best of both welds," The Seventh Workshop on Digital Power, Linz, Austria, 2015.
  51. Y. X. Yu et al., "Study on Energy Regeneration for Boom System of Hybrid Hydraulic Excavator," the 19th International Conference on Mechatronics Technology, 2015.
  52. H. Inoue. "Introduction of PC200-8 Hybrid Hydraulic Excavators," Komatsu technical report, Vol.54, No.161, pp.1-6, 2008.
  53. Komatsu Corporate Profile 2008, "PC200-8 hybrid hydraulic excavator contributes to reducing $CO_2$ Emissions," vol.3, pp.4-5, 2008.
  54. M. Naruse, M. Tamaru and K. Kimoto, "Hybrid construction equipment," US Patent No.6708787, 2004-03-23.
  55. Komatsu Ltd., "Komatsu launches world's first hybrid excavator", Down to Earth, Vol.7, No. 48, pp.23, 2008.
  56. M. Kagoshima, M. Komiyama, T. Nanjo and A. Tsutsui, "Development of new hybrid excavator", Kobelco Technology Review, Vol.27, pp.39-42, 2007.
  57. M. Ochiai, "Development for environment friendly construction machinery", Construction, Vol.9, pp.24-28, 2003.
  58. W. Becca, "Earthmoving, International Construction", Vol.47, No.10, pp.25-34, 2008.
  59. S. Riyuu, et al., Hybrid construction machine JP Patent No.2003328397, 2003-11-19.
  60. Hitachi construction machinery, Co.Ltd, "Dvelopment of battery driven construction machinery for CO2 reduction," Technical report for development of technical measure for global warming control, 2005.
  61. M. Ochiai and S. Ryu, "Hybrid in Construction Mchinery", The 7th JFPS International Symposium on Fluid Power, ISBN:4-931070-07-X pp.41-44, 2008.
  62. S. Ohira et al, "Use of Emission Rights for Construction Machinery to Help Prevent Global Warming," Hitachi Review, Vol.62, No.2, 2013.

Cited by

  1. Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source vol.16, pp.1, 2018, https://doi.org/10.7839/ksfc.2019.16.1.045
  2. 전산유체역학을 이용한 공압시스템용 제습장치의 형상 개선에 관한 연구 vol.16, pp.2, 2019, https://doi.org/10.7839/ksfc.2019.16.2.051
  3. Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle vol.16, pp.2, 2019, https://doi.org/10.7839/ksfc.2019.16.2.080
  4. Improvement of Energy Regeneration for Hydraulic Excavator Swing System vol.7, pp.1, 2018, https://doi.org/10.1007/s40684-019-00165-7
  5. 공기압축기 소비에너지 평가에 관한 연구 vol.17, pp.2, 2018, https://doi.org/10.7839/ksfc.2020.17.2.038
  6. Mapping Fuzzy Energy Management Strategy for PEM Fuel Cell-Battery-Supercapacitor Hybrid Excavator vol.13, pp.13, 2018, https://doi.org/10.3390/en13133387
  7. 가변 유압모터를 이용한 전동지게차 리프트회생 효율에 관한 연구 vol.17, pp.3, 2018, https://doi.org/10.7839/ksfc.2020.17.3.026
  8. Independent Metering Valve: A Review of Advances in Hydraulic Machinery vol.17, pp.4, 2018, https://doi.org/10.7839/ksfc.2020.17.4.054