• Title/Summary/Keyword: Hydraulic Expansion

Search Result 118, Processing Time 0.024 seconds

Methodology of Non-Destructive Examinations on Hydraulic Expansion Region of Steam Generator Tubes (증기발생기 세관 수압확관부 비파괴검사 방법론)

  • Kim, Chang-Soo;Jung, Nam-Du;Lee, Sang-Hoon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.29-33
    • /
    • 2008
  • As the measures of nuclear power plant utilities and manufacturers to reduce the defects of tube expansion region during manufacturing steam generators, many types of NDEs(Non-Destructive Examinations) are conducted to inspect the expansion region. The expansion region of tube is subject to degrade because of stress concentration induced by tube expansion, sludge pile and high temperature. So the inspections for tube expansion region have been reinforced. Liquid penetrant test, helium leak test, Bobbin profile test and hydraulic test are performed to confirm the integrity of tube expanded by hydraulic expansion method. Liquid penetrant test and helium leak test are used to inspect seal weld region on tubesheet end part. Bobbin Profile test is used to inspect fully the expanded region of steam generator tube. Hydraulic test finally verifies the integrity of seal weld region on tubesheet end part.

  • PDF

Estimation of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 방조제 배수갑문 확장사업에 따른 주변해역 수리현상 변화 검토)

  • Park, Byong-Jun;Lee, Sang-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.184-193
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, using Delft3D, FLOW-3D and hydraulic physical scale model testing. In result, the influence of gate expansion was indicated to be weak.

A semi-analytical solution to spherical cavity expansion in unsaturated soils

  • Tang, Jianhua;Wang, Hui;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • This paper presents a rigorous solution for spherical cavity expansion in unsaturated soils under constant suction condition. The hydraulic behavior that describes the saturation-suction relationship is modeled by a void ratio-dependent soil-water characteristic curve, which allows the hydraulic behavior to fully couple with the mechanical behavior that is described by an extended critical state soil model for unsaturated soil through the specific volume. Considering the boundary condition and introducing an auxiliary coordinate, the problem is formulated to a system of first-order differential equations with three principal stress components and suction as basic unknowns, which is solved as an initial value problem. Parameter analyses are conducted to investigate the effects of suction and the overconsolidation ratio on the overall expansion responses, including the pressure-expansion response, the distribution of the stress components around the cavity, and the stress path of the soil during cavity expansion. The results reveal that the expansion pressures and the distribution of the stress components in unsaturated soils are generally higher than those in saturated soils due to the existence of suction.

Estimation for Changing of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 배수갑문 확장사업에 따른 아산만 해역의 수리특성 변화 검토)

  • Park, Byong-Jun;Song, Hyun-Ku;Song, Tae-Kwan;Jang, Eun-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.337-340
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, by 2D and 3D CFD Module. In result, influence of gate expansion was less than tidal current and discharge ratio between old gate and new gate was 4:6.

  • PDF

Impedance Characteristics of an Expansion-Resonator Type Pulsation Attenuator(Attenuation on Flow and Pressure Ripple form a Hydraulic Piston Pump) (팽창 공명기형 맥동 감쇠기의 임피던스 특성(유압용 피스톤 펌프의 유량.압력맥동 감쇠))

  • 이상기
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.88-95
    • /
    • 2000
  • In this paper, an expansion-resonator type pulsation attenuator is proposed to absorb and attenuate flow an pressure ripple with high frequencies generated from hydraulic control systems. The basic principle of a pulsation attenuator proposed here is applied to propagation, reflection, absorption of pressure waves at the cross section of discontinuity and resonance in the pipeline. It has advantage of the compact size and high degree fo freedom for installation in hydraulic systems. The design scheme based on distributed parameter pipeline system with dissipative viscous compressible model is developed. To investigate the reduction of flow and pressure ripple with high frequencies produced by swash plate type axial piston pump, two kinds of attenuators are manufactured. It is experimently confirmed that the spectral intensity of flow and pressure ripple with high frequencies from the pump are reduced up to about 20$^{\circ}$~30dB by using attenuators proposed here. The calculated results were in good agreement with the measured values. From there sults of this study, it is shown that an expansion-resonator type pulsation attenuator is effective in a wide frequency ranges to attenuate the flow and pressure ripple from hydraulic components.

  • PDF

A Study on the Characteristics of the interface in Tube / Tubesheet of the Nuclear Steam Generator by Explosive Bonding (폭발접합된 원자력 증기발생기 튜브/튜브시트 계면 특성에 관한 연구)

  • 이병일;공창식;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.32-50
    • /
    • 1999
  • This study deals with interface charactristics of tube and tubesheet of the nuclear steam generator by the explosive expansion in order to take advantage of optimum expansion ratio, pull-out strength and leakage tightness and improvement of the resisitance on the stress corrosion cracking for low residual stress. The paper also show the relationship between roll, hydraulic and explosive expansion. The results obtain are as follows (1) Because of the explosive bonding is to use the high speed pressure and energy by the explosive, workability is good, bonding region is homogenous (2) Expansion ratio is 2.7%, Pull-out strength 850kg, Leakage strength $500kg/cm^2$. Clearance gap is 10~30mm in case of explosive expansion and interface structure of the tube and tubesheet is optimum condition. (3) As the transition region of the explosive expansion is inactive, the resistance of the stress corrosion cracking is increases 30~40% compare to the roll and hydraulic expansion.

  • PDF

Analysis of the Shaft Resistance of a Pile Embedded in Sand Responding to Ground Deformation by Model Tests of Simulated Ground Heaving (실내모형실험을 통한 지반 융기시 사질토 지반에 매설된 지반 변형 대응형 말뚝의 주면 마찰 저항 분석)

  • Shin, Sehee;Lee, Kicheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • The pile driving process may lead to ground heaving, causing additional positive skin friction to act on the piles, compromising their stability. This study proposes a new pile foundation type that can reduce positive skin friction. This was investigated by designing and constructing a pile with a hydraulic cylinder which actively responds to ground deformation. The newly proposed pile design was compared against traditional piles in multiple model tests where ground heaving was simulated. In the tests, base load and total shaft resistance were measured during ground heaving and with expansion of the hydraulic cylinder. As a result of the tests, a very small amount of expansion of the hydraulic cylinder member completely reduced the positive skin friction and increased the base load. Excessive expansion of the hydraulic cylinder, however, generates negative skin friction beyond the zero skin friction state. Therefore, it is necessary to estimate the appropriate level of hydraulic cylinder expansion, taking into account the amount of ground heaving and the allowable displacement of the pile.

Stress Analysis of Expansion Transition Area in Steam Generator Tube of Optimized Power Reactor-1000 (한국표준형원전 증기발생기 전열관 확관부위의 응력해석)

  • Kim, Young Kyu;Song, Myung Ho;Yoo, One
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2013
  • The steam generators of OPR-1000 plants have Alloy 600 and Alloy 690 as the tube material and its tube expansion method is the explosive expansion method. According to the experience of these plants, circumferential cracks were largely occurred in steam generator tubes expanded by the explosive expansion method and their locations were the outer surface of tube expansion transition region surrounding with piled-up sludge. But even though tubes have the same conditions, tubes with the hydraulic expansion method shows the prevail trend of axial cracks compared to circumferential cracks. Therefore in this study, in order to identify the difference of such phenomena as above, configurations of tube and tubesheet were modeled and at operating conditions, stress values applied in the tube expansion transition area in accordance with tube expansion methods were calculated by using computational program and the direction and the predominance of cracks were evaluated.

Development of Manufacturing Method of Vessel for Keeping Warm by Hydraulic Bulging

  • Chung, Joon-Ki;Cho, Woong-Shick
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.40-46
    • /
    • 2001
  • Bulging is a forming method to shape die cavity by using hydraulic pressure in tube or vessel. Bulging machine and die were developed in order to produce vessel for keeping warm. Bulging machine is a double type with two horizontal cylinders for bulging of two pieces at the same time. The developed die system has one bulging die and two drawing dies for necking at both ends of the tube. The diameter of tube expands by hydraulic pressure in tube. At the same time, thrust at both ends of the tube pushes tube in the direction of expansion to obtain high expansion rate with no crack. In this study, the bulging properties were investigated to solve tube crack and necking in manufacturing vessel by combining bulging and drawing. As a result, high expanding rate of tube radius without crack, precision necking and high productivity were obtained.

  • PDF

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF