• Title/Summary/Keyword: Hydraulic Control Valve

Search Result 411, Processing Time 0.023 seconds

A Study Stability Analysis of a PWM Controlled Hydraulic Equipment (PWM 제어되는 유압장치의 안정성 해석)

  • ;Wennmacher, G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1469-1478
    • /
    • 1995
  • PWM control is a kind of nonlinear control. The merits of PWM control of hydraulic equipment are the robustness of the high speed on-off valve and its low price. And it is easily implemented to hydraulic equipments with microcomputer. The high speed on-off valve is directly digitally controlled without any D/A converter. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using high speed on-off valve, and to give a criterion for the stability of this system. To do this, the nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are examined theoretically and experimentally. Consequently, the availability of the proposed method is confirmed well.

Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal (2방향 전자밸브의 PWM 신호에 의한 압력제어 특성)

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.

A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve (형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션)

  • Choi, Su-Hyun;Lee, Han-Suk;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator (비례솔레노이드 액추에이터를 이용한 압력제어밸브)

  • Ham Young-Bog;Park Pyoung-Won;Yun So-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.86-92
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Modeling and testing for hydraulic shock regarding a valve-less electro-hydraulic servo steering device for ships

  • Jian, Liao;Lin, He;Rongwu, Xu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.318-326
    • /
    • 2015
  • A valve-less electro-hydraulic servo steering device (short: VSSD) for ships was chosen as a study object, and its mathematic model of hydraulic shock was established on the basis of flow properties and force balance of each component. The influence of system structure parameters, changing rate of motor speed and external load on hydraulic shock strength was simulated by the method of numerical simulation. Experiment was designed to test the hydraulic shock mathematic model of VSSD. Experiment results verified the correctness of the model, and the model provided a correct theoretical method for the calculation and control of hydraulic shock of valve-less electro-hydraulic servo steering device.

Response Improvement in Hydraulic Cylinder Force Control System by Using a High Speed On-Off Electro-Magnetic Valve (고속 온.오프 전자밸브를 사용한 유압실린더 힘 제어계의 응답성 개선)

  • Lee I.Y.;Kwon J.H.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.4
    • /
    • pp.15-21
    • /
    • 2004
  • High speed on-off electro-magnetic valves have been used for pressure control or flow control in automotive or construction machine servomechanisms. These systems require quicker valve switching speed to improve control preciseness. The authors designed and manufactured an electric valve driver with quick response characteristics by using 3 power source type valve driver concept. In experiments by using a hydraulic system incorporating the new valve driver, the new driver shortened the switching lag time from 5 ms to 1.3 ms. And also the new driver showed excellent position tracking control performances.

  • PDF

A Study on the Hydraulic Vibration Characteristics of the Prefill Check Valve (프리필용 체크밸브의 유압진동 특성에 관한 연구)

  • Park, Jeong Woo;Han, Sung-Min;Lee, Hu Seung;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • A rear axle steering (RAS) system is attached to the rear of medium and large commercial vehicles that transport large cargo. The existing RAS systems are driven by electro-hydraulic actuator (EHA), and most commercialized EHAs consist of electric motors, hydraulic pumps, relief valves, prefill valves and cylinders. The prefill valve required for such EHAs is a type of check valve with extremely low cracking pressure that should not allow RAS to have noise or vibration, and the prefill valve prevents system negative pressure as well as unstable operation. Most papers on this topic rely on experiments to predict valve performance, and theoretically detailed modeling of valves or pipelines is performed, but it is very rare to evaluate hydraulic vibration characteristics by analysing everything from hydraulic pumps to valves comprehensively. In this study, we proposed an experimental circuit that can predict the performance of the prefill valve. The study also analysed the pressure-flow pulsation that is transmitted to the valve through the pipeline, and how the transmitted pressure-flow pulsation affects the valve vibration.