• Title/Summary/Keyword: Hybrid supercapacitors

Search Result 32, Processing Time 0.027 seconds

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J.;Costa, Karla A.G.;Gross, Marcos A.;Paterno, Leonardo G.;Pereira-da-Silva, Marcelo A.;Morais, Paulo C.;Soler, Maria A.G.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.215-230
    • /
    • 2017
  • The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials

  • Yang, Youngmo;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • The increasing demand for energy storage in mobile electronic devices and electric vehicles has emphasized the importance of electrochemical energy storage devices such as Li-ion batteries (LIBs) and supercapacitors. For reversible Li storage, alternative anode materials are actively being developed. In this study, we designed and fabricated an Nb2O5-Li3VO4 composite for use as an anode material in LIBs and hybrid supercapacitors. Nb2O5 powders were dissolved into a solution and the precursors were precipitated onto Li3VO4 through a simple, low-temperature hydrothermal reaction. The annealing process yielded an Nb2O5-Li3VO4 composite that was characterized by X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy. Electrochemical tests revealed that the Nb2O5-Li3VO4 composite electrode demonstrated increased capacities of approximately 350 and 140 mAh g-1 at 0.1 and 5 C, respectively, were maintained up to 1000 cycles. The reversible capacity and rate capability of the composite electrode were enhanced compared to those of pure Nb2O5-based electrodes. These results can be attributed to the microstructure design of the synthesized composite material.

Elucidating Electrochemical Energy Storage Performance of Unary, Binary, and Ternary Transition Metal Phosphates and their Composites with Carbonaceous Materials for Supercapacitor Applications

  • Muhammad Ramzan Abdul Karim;Waseem Shehzad;Khurram Imran Khan;Ehsan Ul Haq;Yousaf Haroon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.321-344
    • /
    • 2024
  • Transition metal compounds (TMCs) are being researched as promising electrode materials for electrochemical energy storage devices (supercapacitors). Among TMCs, transition metal phosphates (TMPs) have good, layered structures owing to open framework and protonic exchange capability among different layers, good surface area due to engrossed porosity, rich active redox reaction sites owing to octahedral structure and variable valance metallic ions. Hence TMPs become more ideal for supercapacitor electrode materials compared to other TMCs. However, TMPs have got some issues like low conductivity, rate performance, stability, energy, and power densities. But these problems can be addressed by making their composites with carbonaceous materials, e.g., carbon nanotubes (CNTs), graphene oxide (GO), graphitic carbon (GC), etc. A few factors like high surface area, excellent electrical conductivity of carbon materials and variable valence metal ions in TMPs caused great enhancement in their electrochemical performance. This article tries to discuss and compare the published data, majorly in last decade, regarding the electrochemical energy storage potential of pristine unary, binary, and ternary TMPs and their hybrid composites with carbonaceous materials (CNTs, GOs/rGOs, GC, etc.). The electrochemical performance of the hybrids has been reported to be higher than the pristine counterparts. It is hoped that the current review will open a new gateway to study and explore the high performance TMPs based supercapacitor materials.

A Study on the Characteristics of Supercapacitor for High Voltage System (고전압 시스템을 위한 초고용량 축전지 특성 연구)

  • Kim, Byeong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • Supercapacitors as novel energy storage devices between conventional capacitors and batteries, with more specific capacitance and energy densities than conventional capacitors and more power densities than batteries are to be used in many fields. And, social demand on fuel economy and reducing pollution needs equipment of new function such as energy storage system with good power performance, high cyclability and good energy efficiency. Supercapacitor is regarded as one of good alternatives for meeting the requirement of market with excellent power performance and high cyclability. This paper deals with the fundamental characteristics of supercapacitor unit and charge and discharge behavior of supercapacitor module for developing 42V hybrid energy storage system with lead acid battery and supercapacitor in order to adopt to 42V power net for vehicle.

Design and Analysis of Fuel Cell Hybrid Architectures Using Supercapacitors (슈퍼캡을 이용한 연료전지 하이브리드 전기자동차 전력계 시스템 구조)

  • Jang, Min-Ho;Lee, Jae-Moon;Ha, Tae-Jong;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.97-99
    • /
    • 2007
  • 연료전지 슈퍼캡을 이용한 하이브리드 자동차 전력계 시스템을 분석하기 위하여 시뮬레이션 도구를 이용하였으며 기존의 전력계 구조를 보완한 새로운 전력계 구조를 제안하였다. 차량의 성능 조건인, 가속 시험과 주행 시험(Japan 10-15 cycle과 FTP 75 cycle)을 모의 실험하여 전력계 시스템 중에 슈퍼캡용량을 최적으로 설계하였다.

  • PDF

Comparison of Control Strategies in Series Hybrid Electric Vehicles with Batteries and Supercapacitors (배터리와 슈퍼 캐패시터를 가지는 직렬형 하이브리드 차량의 전력 제어 방법 비교)

  • Kim, J.C.;Lee, S.J.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.414-415
    • /
    • 2010
  • 하이브리드 자동차는 주 에너지원 외에 보조 에너지 저장 장치를 가지게 되는데 배터리와 슈퍼 캐패시터를 혼합하여 사용할 경우 주행 성능이 향상된다. 하지만 배터리의 경우 잦은 충방전이 일어날 경우 수명이 감소되고, 큰 전류에 의해 손상된다는 단점이 있다. 반면 슈퍼 캐패시터는 충방전 횟수가 많고, 수명이 길다는 장점이 있다. 따라서 배터리의 사용을 최소로 하고, 슈퍼 캐패시터를 주로 사용하여 제어 할 경우, 배터리의 수명 향상을 기대할 수 있다.

  • PDF

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Effect of Hydrogen in Rapid Thermal Annealing on the Graphene-Zinc Oxide Electrode for Supercapacitor (슈퍼커패시터용 그래핀-산화아연 전극의 급속열처리에서 수소의 영향)

  • Jeong, Woo-Jun;Oh, Ye-Chan;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • With recent demand for the renewable energy resources, we conducted a research on the energy conversion and storage device of supercapacitor. The hybrid graphene-zinc oxide(GZO) electrodes for the supercapacitors (SCs) were fabricated and investigated. To increase the electrical conductivity of the GZO electrode, the rapid thermal annealing(RTA) in $Ar/H_2$(10%) atmosphere was applied and the effect was examined by comparing it with RTA at Ar atmosphere. In Raman spectroscopy, the electrodes annealed at 400? in $Ar/H_2$ atmosphere showed a lower ratio of D/G peak than that of annealed at Ar atmosphere, and had a larger specific capacitance(Sc) in the cyclic voltammetry(CV), and a lower the equivalent series resistance(ESR) in the electrochemical impedance spectroscopy(EIS). The reason seems to come from the better mixing of the graphene and zinc oxide by the RTA in $Ar/H_2$(10%).

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF