Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.
The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.
This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.
디지털 기술의 발전과 코로나19의 영향으로 기업의 혁신과 조직문화가 변화하고 있으며, HRD(Human Resource Development) 분야에서 스마트 러닝의 중요성이 부각되고 있다. 본 연구에서는 HRD 담당자의 관점에서 스마트 러닝을 구성하는 요인들의 상대적인 중요성을 밝히는 것을 목적으로 하였다. 선행 문헌 검토를 통해 현 상황에 가장 부합하는 스마트 러닝 계층 및 요인을 도출하고, AHP 방법을 활용하여 해당 요인의 상대적 중요도를 파악하였다. 결과적으로 1계층 요인에서는 '학습 활동', '교육 활동', '학습 콘텐츠', '평가 방법 및 평가', '학습 시간 및 공간' 순으로 중요도가 확인 되었다. 2계층 전체 요인에서는 '교육 전략', '학습 결과', '학습 과업', '학습 목표', '학습 지원'이 상위 5위에 나타나는 요인으로 확인되었다. 본 연구 결과는 스마트 러닝 개념을 재정립하고, 추후 연구를 위한 학술적 프레임워크를 제안한 점에서 의의를 가진다. 또한, 실무적으로는 HRD 담당자들이 스마트 러닝을 개선하고 향상시키기 위해 어떤 요인에 주력해야 하는지에 대한 유용한 정보를 제공하는데 기여할 것으로 기대된다.
본 연구에서는 자기조직화 교사학습 신경망인 SOSL(Self-Organized Superised Learning)과 이 신경망의 구조를 제안한다. SOSL신경망은 하이브리드 형태의 신경망으로써 다수 개의 컴포넌트 에러 역전파 신경망들과 수정된 PCA신경망으로 구성된다. CBP신경망은 군집화되고 복잡한 입력패턴에 대하여 교사학습을 병렬적으로 수행한다. 수정된 PCA신경망은 군집화 및 지역투영에 의하여 원 입력패턴을 보다 작은 차원으로 변환시키기 위하여 사용된다. 제안된 SOSL은 많은 입력패턴을 가짐으로써 큰 네트워크 크기를 가지게 되는 신경망에 효과적으로 적용이 가능하다.
This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.
This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.
본 논문에서는 회귀용 support vector machine의 성능 개선을 위한 모멘텀과 kernel-adatron 기법이 조합형 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 supper vector machine의 학습기법인 기술기상승법에 발생하는 최적해로의 수렴에 따란 발진을 억제하여 그수렴속도를 좀 더 개선시키는 모멘텀의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 갖는 kernel-adatorn 알고리즘의 장점을 그대로 살린 것이다. 제안된 알고리즘의 support vector machine을 1차원과 2차원 비선형 함수 회귀에 적용하여 시뮬레이션한 결과, 학습속도에 있어서 2차 프로그래밍과 기존의 kernel-adaton 알고리즘보다 더 우수하고, 회귀성능면에서도 우수한 성능이 있음을 확인하였다.
본 논문에서는 하이브리드 유전 알고리즘을 이용한 morphological 뉴럴 네트워크 (MNN)의 최적화 방법을 제안하였다. MNN은 max-plus 연산을 기반으로 하고 있으므로 경사 학습법에 의한 파라미터 학습이 매우 어렵다. 이러한 문제를 해결하기 위해 하이브리드 유전 알고리즘을 이용하여 MNN의 파라미터들을 학습하였다. 제안된 방법의 유용성을 보이기 위해 SIDBA(standard image database) 표준영상에서 추출된 테스트 영상을 이용한 영상 압축/복원 실험을 수행하였고, 그 결과 제안된 방법에 의한 복원 영상이 합-곱 연산에 기반한 기존의 뉴럴 네트워크에 의한 복원영상보다 우수함을 알 수 있었다.
The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.