• Title/Summary/Keyword: Hybrid imaging

Search Result 122, Processing Time 0.03 seconds

Evaluation of Fabric Pilling Using Hybrid Imaging Methods

  • Kim Sung-Min;Park Chang-Kyu
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2006
  • A study has been made on the quantification and evaluation of fabric pilling using two-dimensional and three-dimensional hybrid imaging methods. Two-dimensional imaging method was good for some samples while three-dimensional measurement method for others, according to the properties of their base fabric. Various image processing techniques as well as three-dimensional data processing algorithms were applied for the extraction of pills from measured data and a series of shape parameters have been defined for the objective evaluation of fabric pilling. An evaluation criterion that is compatible with the conventional evaluation method has been proposed by applying the new evaluation method to the current photographic standards.

The characteristic study of hybrid X-ray detector using CdTe and Zns:AgCl phosphor (CdTe 와 ZnS:AgCl phosphor를 이용한 Hybrid형 X선 검출기의 특성연구)

  • Seok, Dae-Woo;Kang, Sang-Sik;Kim, Jin-Young;Park, Ji-Koon;Mun, Chi-Woong;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.71-74
    • /
    • 2003
  • Photoconductor for direct detection fiat-panel imager present a great materials challenge, since their requirement include high X-ray absorption, ionization and charge collection, low leakage current and large area deposition, CdTe is practical material. We report studies of detector sensitivity, That is an CdTe with $5{\mu}m$ thickness on glass. That is hybrid layer of depositting ZnS:AgCl phosphor with $100{\mu}m$ on CdTe. The leakage current of hybrid is similar to it of a-Se, but photocurrent is larger than a-Se. Both of them have high spatial resolution, but hybrid has higher sensitivity than a-Se at comparable bias voltage.

  • PDF

New Acoustic Imaging Method Development for Localization of an Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.10-17
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Quantitation of In-Vivo Physiological Function using Nuclear Medicine Imaging and Tracer Kinetic Analysis Methods (핵의학 영상과 추적자 동력학 분석법을 이용한 생체기능 정량화)

  • Kim, Su-Jin;Kim, Kyeong-Min;Lee, Jae-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • Nuclear medicine imaging has an unique advantage of absolute quantitation of radioactivity concentration in body. Tracer kinetic analysis has been known as an useful investigation methods in quantitative study of in-vivo physiological function. The use of nuclear medicine imaging and kinetic analysis together can provide more useful and powerful intuition in understanding biochemical and molecular phenomena in body. There have been many development and improvement in kinetic analysis methodologies, but the conventional basic concept of kinetic analysis is still essential and required for further advanced study using new radiopharmaceuticals and hybrid molecular imaging techniques. In this paper, the basic theory of kinetic analysis and imaging techniques for suppressing noise were summarized.

Development of New Methods for Position Estimation of Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Safety Management for MR-Guided Interventions

  • Cherkashin, Mikhail;Berezina, Natalia;Serov, Alexey;Fedorov, Artem;Andreev, Georgy;Kuplevatsky, Vladymir
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.3
    • /
    • pp.152-157
    • /
    • 2016
  • Purpose: Operating room management is the serious and complex task for hospital managers and the common approach is to develop relevant standard operational procedures. From patient and staff safety perspective, operating room management should be well-studied and hospital should identify and address any potential risks. Simultaneous usage of different imaging and less-invasive treatment technologies demands strong management control. Materials and Methods: We have formed the multidisciplinary expert panel (surgeons, anesthesiologists, radiologists, healthcare managers etc.) for hybrid theater management standard operational procedure development. On the first stage the general concept of hybrid room design and patient routing was developed. The second stage included the technical details discussion. For patient safety improvement we modified the Surgical Safety Check-list in accordance with potential MRI-related safety challenges and concerns. Results: WHO Surgical Safety Checklist is a simple and easy-to use tool which includes three blocks of question (grouped by the surgery process). We have developed two additional blocks of questions for the intraoperative magnetic resonance investigation. It is very important to have a special detailed routing with a strong control of ferromagnetic devices and anesthesiology care. Conclusion: High-energy MRI (1.5-3.0T) is characterized by potential influence on patient and staff safety in case of hybrid surgery. It is obvious to have a strong managerial control of ferromagnetic devices and anesthesiology care. Surgical Safety Checklist is the validated tool for improving patient safety. Modification and customization of this check-list potentially provides the opportunity for surgery processes improving.

Phantom Evaluation and Development of Photoacoustic Tomography Imaging System using Unfocused Ultrasound Transducer and Back-Projection Algorithm (역투사 알고리듬과 비촛점 트랜스듀서를 적용한 광음향 단층영상 장치개발과 팬텀실험)

  • Ryu, Sang-Hun;Kim, Do-Hyun;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2349-2351
    • /
    • 2010
  • Photo Acoustic Tomography (PAT) is a hybrid imaging modality which combines high contrast of optical imaging and spatial resolution of ultrasound imaging, thus it is suitable to image biological tissue noninvasively. Laser-induced photoacoustic signals were measured from a sample by means of an unfocused ultrasound transducer, then PAT image was reconstructed based on a universal back-projection algorithm. To evaluate the feasibility of our system, phantom test was performed, consequently, the PAT images obtained using our system showed highly analogous shape and volume with those of the phantom. This result demonstrated that our system can provide a powerful tool for imaging the substructure of biological tissue in non-invasive manner.

Clinically translatable photoacoustic imaging of cancer diagnosis (임상적용이 가능한 광음향 암 진단 기술)

  • Kim, Mi-Ji;Park, Yeon-Seong;Yoon, Changhan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.476-484
    • /
    • 2019
  • Photoacoustic imaging is a hybrid real-time imaging technique that combines high optical contrast and ultrasonic resolution. It has primarily been utilized in pre-clinical research and has evolved into clinical practice. In this paper, we review photoacosutic imaging for detection of primary canccer and metastatis and its limitation in translation from pre-clinical to clinical application.

Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

  • Lee, Hee-Keun;Chun, Kwang-San;Park, Sang-Hyeon;Kang, Chung-Yun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.770-783
    • /
    • 2015
  • Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.