DOI QR코드

DOI QR Code

Clinically translatable photoacoustic imaging of cancer diagnosis

임상적용이 가능한 광음향 암 진단 기술

  • 김미지 (인제대학교 의료영상 및 치료시스템 연구실) ;
  • 박연성 (인제대학교 의료영상 및 치료시스템 연구실) ;
  • 윤창한 (인제대학교 의료영상 및 치료시스템 연구실)
  • Received : 2019.05.14
  • Accepted : 2019.06.25
  • Published : 2019.07.31

Abstract

Photoacoustic imaging is a hybrid real-time imaging technique that combines high optical contrast and ultrasonic resolution. It has primarily been utilized in pre-clinical research and has evolved into clinical practice. In this paper, we review photoacosutic imaging for detection of primary canccer and metastatis and its limitation in translation from pre-clinical to clinical application.

광음향 영상 기술은 광학영상 및 초음파영상 기법을 융합한 영상 기술로 높은 공간 해상도 및 대조도의 영상을 실시간으로 제공이 가능하다. 광음향 영상은 전임상 연구에서 많은 연구가 진행되었으며 최근 광음향 영상의 임상적 응용을 위한 연구에 많은 노력을 기울이고 있다. 본 논문은 광음향 영상을 이용한 원발 종양 및 전이 진단 기술 연구 현황에 대해 소개하고 임상적용을 위한 문제점에 대해서 알아보도록 한다.

Keywords

GOHHBH_2019_v38n4_476_f0001.png 이미지

Fig. 1. Photoacoustic signal generation and imaging process.

GOHHBH_2019_v38n4_476_f0002.png 이미지

Fig. 2. Illustration of photoacoustic signal detection process. (a) Laser irradiation into biological tissue (b) Photoacoustic signal generation and detection.

GOHHBH_2019_v38n4_476_f0003.png 이미지

Fig. 3. Photoacoustic imaging result of breast microcalcifications.[16] Reproduced from J. Kang et al. J. Biophotonics 2015, https://doi.org/10.1002/jbio.201 300100,[16] according to the Copyright Clearance Center.

GOHHBH_2019_v38n4_476_f0004.png 이미지

Fig. 4. Breast imaging with the Twente photoacoustic mammoscope.[20]

GOHHBH_2019_v38n4_476_f0005.png 이미지

Fig. 5. SBH-PACT of healthy breast image.[17]

GOHHBH_2019_v38n4_476_f0006.png 이미지

Fig. 6. Detection of sentinel lymph node using photoacoustic imaging. (a) Injection of contrast agent into the primary tumor (b) Detection of photoacoustic signals from a contrast agent flowing to a sentinel lymph node by irradiation with a near-infrared laser.

GOHHBH_2019_v38n4_476_f0007.png 이미지

Fig. 7. Ultrasound and LAND-localized images of in vivo murine SLN by time.[31] Reproduced from H. Yoon et al. Med Phys 2017, https://doi.org/10.1002/mp.12269[31], according to the Copyright Clearance Center.

Table 1. Features of imaging systems used for sentinel lymph node biopsy.

GOHHBH_2019_v38n4_476_t0001.png 이미지

References

  1. H. J. Kim, "Proposal for improving the outcomes of cancer treatment", J. Korean Med. Assoc. 60, 219-222 (2017). https://doi.org/10.5124/jkma.2017.60.3.219
  2. R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2019," CA : A Cancer Journal for Clinicians, 69, 7-34 (2019). https://doi.org/10.3322/caac.21551
  3. J. H. Chang, "Disease diagnostic application of photoacoustic imaging technology", The mag. the IEIE. 34-43 (2014).
  4. Absorption Spectra for Biological Tissues (Oregon Medical Laser Center, Portland), https://omlc.org/classroom/ece532/class3/muaspectra.html.
  5. M. Xu and L. V. Wang, "Photoacoustic imaging in biomedicine," Review of Scientific Instruments, 77, 041101 (2006). https://doi.org/10.1063/1.2195024
  6. J. X. Xia, J. Yao, and L. V. Wang, "Photoacoustic tomography: principles and advances," Electromagn Waves, 147, 1-22 (2014). https://doi.org/10.2528/PIER14032303
  7. X. Wang, J. B. Fowlkes, J. W. Cannata, C. Hu, and P. L. Carson, "Photoacoustic imaging with a commercial utrasound system and a custom probe," Ultrasound in Medicine & Biology, 37, 484-492 (2011). https://doi.org/10.1016/j.ultrasmedbio.2010.12.005
  8. A. Krumholz, J. Yao, L. V. Wang. S. J. Vanvickle-Chavez, T. P. Fleming, and W. E. Gillanders, "Photoacoustic microscopy of tyrosinase reporter gene in vivo," J. Biomed. Opt. 16, 080503 (2011). https://doi.org/10.1117/1.3606568
  9. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, New York, 1993), Chap. 34.
  10. A. A. Oraevsky and A. A. Karabutov, Biomedical Photonics Handbook (CRC PRESS, New York, 2003), Chap. 34.
  11. S. Park, S. R. Aglyamov, and S. Y. Emelianov, "Beamforming for photoacoustic imaging using linear array transducer," Proc. IEEE ultrasonics Symposium, 856-859 (2007).
  12. S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, "Adaptive beamforming for photoacoustic imaging," Optics Letters, 38, 1291-1293 (2008).
  13. C. Yoon, J. Kang, S. Han, Y. Yoo, T. -K. Song, and J. H. Chang, "Enhancement of photoacoustic imaging quality by sound speed correction: ex vivo evaluation," Optics Express, 20, 3082-3090 (2012). https://doi.org/10.1364/OE.20.003082
  14. K. S. Valluru and J. K. Willmann, "Clinical photoacoustic imaging of cancer," Ultrasonography, 35, 267-280 (2016). https://doi.org/10.14366/usg.16035
  15. J. Jose, D. J. Grootendorst, T. W. Vijn, M. W. Wouters, H. van Boven, T. G. van Leeuwen W. Steenbergen, T. J. Ruers, and S. Manohar, "Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography," J. Biomed. Opt. 16, 096021 (2011). https://doi.org/10.1117/1.3631705
  16. J. Kang, E. K. Kim, G. R. Kim, C. Yoon, T. K. Song, and J. H. Chang, "Photoacoustic imaging of breast microcalcifications: A validation study with 3-dimensional ex vivo data and spectrophotometric measurement," J. Biophotonics, 8, 71-80 (2015). https://doi.org/10.1002/jbio.201300100
  17. L. Lin, P. Hu, J. Shi, C. M. Appleton, K. Maslov, L. Li, R. R. Zhang, and L. V. Wang, "Single-breath-hold photoacoustic computed tomography of the breast," Nature Communications, 9, 2352 (2018). https://doi.org/10.1038/s41467-018-04576-z
  18. C. H. Yoon, Y. Yoo, T. K. Song, and J. H. Chang, "Pixel based focusing for photoacoustic and ultrasound dual-modality imaging," Ultrasonics, 54, 2126-2133 (2014). https://doi.org/10.1016/j.ultras.2014.06.014
  19. C. Yoon, J. Kang, S. Han, Y. Yoo, T. -K. Song, and J. H. Chang, "Enhancement of photoacoustic imaging quality by sound speed correction: ex vivo evaluation," Optics Express, 20, 3082-3090 (2012). https://doi.org/10.1364/OE.20.003082
  20. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, "The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies," European Radiology, 26, 3874-3887 (2016). https://doi.org/10.1007/s00330-016-4240-7
  21. C. P. Favazza, O. Jassim, L. A. Cornelius, and L. V. Wang, "In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus," J. Biomed. Opt. 16, 016015 (2011). https://doi.org/10.1117/1.3528661
  22. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, "Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer," Nano Lett., 9, 2825-2831 (2009). https://doi.org/10.1021/nl802929u
  23. C. L. Bayer, Y. S. Chen, S. Kim, S. Mallidi, K. Sokolov, and S. Emelianov, "Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods," Biomed. Opt Express, 2, 1828-1835 (2011). https://doi.org/10.1364/BOE.2.001828
  24. W. Lu, Q. Huang, G. Ku, X. Wen, M. Zhou, D. Guzatov, P. Brecht, R. Su, A. Oraevsky, L.V. Wang, and C. Li, "Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres," Biomaterials, 31, 2617-2626 (2010). https://doi.org/10.1016/j.biomaterials.2009.12.007
  25. G. Kim, S. W. Huang, K. C. Day, M. O'Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, "Indocyanine-green-embedded pebbles as a contrast agent for photoacoustic imaging," J. Biomed. Opt. 12, 044020-044028 (2007). https://doi.org/10.1117/1.2771530
  26. A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, "Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging," ACS Nano., 8, 250-259 (2014). https://doi.org/10.1021/nn403527r
  27. A. Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Chen, H. Dai, and S. S. Gambhir, "Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice," Nano Lett. 10, 2168-2172 (2010). https://doi.org/10.1021/nl100890d
  28. K. K. Swenson, M. J. Nissen, C. Ceronsky, L. Swenson, M. W. Lee, and T. M. Tuttle, "Comparison of side effects between sentinel lymph node and axillary lymph node dissection for breast cancer," Ann Surg Oncol, 9, 745-753 (2002). https://doi.org/10.1007/BF02574496
  29. M. Gherghe, C. Bordea, and A. Blidaru, "Sentinel lymph node biopsy (SLNB) vs. axillary lymph node dissection (ALND) in the current surgical treatment of early stage breast cancer," J Med Life, 8, 176-180 (2015).
  30. A. Khafif, S. Schneebaum, D. M. Fliss, H. Lerman, U. Metser, R. Ben-Yosef, Z. Gil, L. Reider-Trejo, L. Genadi, and E. Even-Sapir, "Lymphoscintigraphy for sentinel node mapping using a hybrid single photon emission CT (SPECT)/CT system in oral cavity squamous cell carcinoma.," Head Neck, 28, 874-879 (2006). https://doi.org/10.1002/hed.20434
  31. K. A. Kvistad, J. Rydland, H. B. Smethurst, S. Lundgren, H. E. Fjosne, and O. Haraldseth, "Axillary lymph node metastases in breast cancer: preoperative detection with dynamic contrast-enhanced MRI," Eur Radiol, 10, 1464-1471 (2000). https://doi.org/10.1007/s003300000370
  32. Y. H. Kim, J. S. Lee, C. J. Lee, J. R. Kim, and E. S. Chang, "Preoperative axillary staging using 18F-FDG PET/CT and ultrasonography in breast cancer patients", J. Breast Cancer, 12, 163-169 (2009). https://doi.org/10.4048/jbc.2009.12.3.163
  33. K. H. Song, J. A. Margenthaler, and L. V. Wang, "Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model," J. Biomed. Opt. 13, 054033 (2008). https://doi.org/10.1117/1.2976427
  34. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, and L. V. Wang, "Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system," Biomedical Optics Express, 1, 278-284 (2010). https://doi.org/10.1364/BOE.1.000278
  35. G. P. Luke, A. Bashyam, K. A. Homan, S. Makhija, Y. S. Chen, and S. Y. Emelianov, "Silica-coated gold nanoplates as stable photoacoustic contrast agents for sentinel lymph node imaging," Nanotechnology, 24, 455101 (2013). https://doi.org/10.1088/0957-4484/24/45/455101
  36. K. Wilson, K. Homan, and S. Emelianov, "Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging," Nat. Commun, 3, 648 (2012). https://doi.org/10.1038/ncomms1659
  37. H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, "Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets," Med Phys. 44, 3444-3449 (2017). https://doi.org/10.1002/mp.12269
  38. G. P. Luke and S. Y. Emelianov, "Label-free detection of lymph node metastases with US-guided functional photoacoustic imaging," Radiology, 277, 435-442 (2015). https://doi.org/10.1148/radiol.2015141909