• Title/Summary/Keyword: Hybrid cross-section

Search Result 73, Processing Time 0.028 seconds

Effect of the Circular Saw-Blade Type and Wear on the Cutting Quality of a Glass Carbon-Fiber Hybrid Composite (원형 톱날의 형태와 마모가 유리 탄소섬유 하이브리드 복합재료의 절단 품질에 미치는 영향)

  • Baek, Jong-Hyun;Joo, Chang-Min;Kim, Su-Jin;Park, Yoon-Ok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.72-79
    • /
    • 2021
  • A circular saw is an effective tool for cutting glass and carbon-fiber hybrid composites. This study investigated tool wear and cut quality when reusing saw blades. The carbide saws wear four times faster than the new ones, and polycrystalline diamond (PCD) is very resistant to tool wear, except at the end of its lifespan. The cut cross-section quality is affected by the blade type, tool wear, and spindle speed. Alternate top bevel (ATB)-type blades are suitable for cutting fiber-reinforced plastics, but triple-chip grind (TCG)-type blades are unsuitable because they cause fiber-pullout defects. Tool wear and low spindle speeds increase the occurrence of arc scratches, due to the rear saw blade. A microscopic examination showed that the burr, which is a mixture of fiber chips and epoxy matrix, was bonded on top, and glass-fiber delamination occurred on the bottom glass-fiber-reinforced polymer (GFRP) surface.

Analysis of Radio-Wave Propagation Characteristics in Curved Tunnel (곡선 터널 내에서 전파특성 분석)

  • 김영문;정민석;진용옥;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1017-1024
    • /
    • 2002
  • In this paper, we present the analysis of radio wave propagation characteristics in curved tunnels. Tunnel propagation models are performed in two cases which are using ray-tracing method for straight tunnels and geometrical optics extension to the standard hybrid waveguide model for curved ones. By regression analysis for measured power based on distance between the transmitter and the received antenna in tunnels that have 3.5 m $\times$ 6 m cross section and limited wall depth path loss are 0.19 dB/m for straight section and 0.68 dB/m for curved ones. By comparing model analysis with measurement in tunnels, it has been shown that the simulated results of tunnel propagation models are similar to the measured values.

A Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics (PO-GO 연계기법을 이용한 RCS 해석코드 개발)

  • Jang, Min-Uk;Myong, Rho-Shin;Jang, In-Mo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.958-967
    • /
    • 2014
  • A hybrid method based on high-frequency asymptotic optics was developed in order to predict the RCS of flying vehicles for RCS reduction studies. In cavity return, the rays are assumed to bounce from the inlet cavity based on the laws of geometrical optics and to exit the cavity via the aperture. In other parts of a flying vehicle, the physical optics method is applied to compute the back-scattered field from the solid surface. The hybrid method was validated by considering simple models of sphere and sphere with cavity. In addition, RCS analysis of a flying vehicle was conducted using the new hybrid electromagnetic scattering method based on physical optics and geometrical optics theories.

Improved Method of Moments Using Hybrid Technique of Galerkin's and Interpolation Methods for Numerical Analysis of Electromagnetic Waves (전자파 수치 해석을 위해 갤러킨 기법과 보간법을 혼용하여 개선시킨 모멘트법)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • An improved method of moments using a hybrid Galerkin-interpolation technique for numerical analysis of electromagnetic wave scattering in the 3-dimensional space is presented in this paper. Basically, the EFIE(electric field integral equation) and RWG(Rao-Wilton-Glisson) basis function are used to compute a property of electromagnetic wave scattering. We propose a hybrid technique combining the existing Galerkin's method with the interpolation method to improve the efficiency of the numerical computation. Then, an index of relative distance of each cells was defined to distinguish the relatively far elements, which interpolation method can be applied. To verify the performance of the proposed technique, the analytical Mie-series solution was used to compute the theoretical RCS of a conducting sphere for the purpose of comparison. We also applied this hybrid technique to various scatterers such as trihedral/omni-directional corner-reflectors to analyze the radar backscattering properties.

Electrical Properties of Chip Typed Shunt Resistor Composed of Carbon Nanotube and Metal Alloy for the Use of DC Current Measurement (DC 전류 측정을 위한 탄소나노튜브와 합금으로 구성된 칩 타입 션트저항체의 전기적 특성)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • We fabricated plate typed shunt resistors composed of carbon nanotube (CNT) and metal alloy for measuring DC current. CNT plates were prepared from dispersed CNT/Urethane solution by squeezing method. Cu/Ni alloys were prepared from composition-designed alloy wires for adjusting the temperature coefficient of resistance (TCR) by pressing them. As well, we fabricated a hybrid resistor by squeezing the CNT/Urethane solution on the metal alloy plate directly. In order to confirm the composition ratio of the Cu/Ni alloy, we used an energy-dispersed X-ray spectroscopy (EDX). Cross-section and surface morphology were analyzed by using a scanning electron microscopy (SEM). Finally, we measured the initial resistance of 2.35 Ω at 25℃ for the CNT paper resistor, 7.56 mΩ for the alloy resistor, and 7.38 mΩ for the hybrid resistor. The TCR was also measured to be -778.72 ppm/℃ at the temperature range between 25℃ to 125℃ for the CNT paper resistor, 824.06 ppm/℃ for the alloy resistor, and 17.61 ppm/℃ for the hybrid resistor. Some of the hybrid resistors showed a near-zero TCR of 1.38, -2.77, 2.66, and 5.49 ppm/℃, which might be the world best-value ever reported. Consequently, we could expect an error-free measurement of the DC current using this resistor.

Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials (국내산 목재-콘크리트 복합적층재의 정적 휨 강도성능)

  • Byeon, Jin-Woong;Cho, Young-June;Lee, Je-Ryong;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • In this study, to develop the lattice materials with a low environmental load for restoring the destroyed forest, 7 types of wood-concrete hybrid laminated materials were manufactured with domestic four softwoods, three hardwoods and concrete, and the effects of density of wood species on static bending strength performances were investigated. Bending MOEs of wood-concrete hybrid laminated materials increased with increasing density of wood species on the whole, and the values were higher than that of concrete by hybrid-laminating woods on the concrete. It was found that the measure values of bending MOEs were slightly lower than the calculated values calculated using equivalent cross-section method from MOE of each laminae of hybrid laminated materials and the difference between them was less than 10%. Bending proportional limit stresses of hybrid laminated materials showed 1.2-1.6 times higher than that of concrete by hybrid-laminating. Bending strength (MOR) of hybrid laminated materials increased with the density of wood species. By hybrid-laminating, the MOR of concrete was considerably increased. Therefore, it is considered that wood-concrete hybrid laminated materials can be applied as a materials with a low environmental load and durability for ecological restoration.

Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part II : Finite Element Formulation and Implementations (복합재료적층판의 진동해석을 위한 유한요소모델 II. 유한요소모델의 유도 및 해석)

  • 홍순조
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.103-111
    • /
    • 1994
  • Based on a variational principle of the consistent shear deformable discrete laminate theory derived in the companion paper Part I, a finite element procedure for the vibration analysis of laminated composite plates is presented. The present formulation takes the in-plane displacements of an arbitrary layer, the rotations of the cross section of each layer and transverse displacement of the plate as the state variables at a nodal point of finite element, resulting in total nodal degree of freedom of 2(n+l) +1 for the n-layered laminate. Thus, it allows to specify displacement boundary conditions of layer stretching and/or rotation of layer cross sections around the plate edge and/or lateral displacement. The developed procedure is applied to the free vibration problem for sandwich-type hybrid laminates composed of layers with drastically different material properties whose elasticity solutions are known. Comparison of analysis results with other FEM solutions showed that the present formulation yields better accuracy.

  • PDF

Long-term flexural cracking control of reinforced self-compacting concrete one way slabs with and without fibres

  • Aslani, Farhad;Nejadi, Shami;Samali, Bijan
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.419-444
    • /
    • 2014
  • In this study experimental result of a total of eight SCC and FRSCC slabs with the same cross-section were monitored for up to 240 days to measure the time-dependent development of cracking and deformations under service loads are presented. For this purpose, four SCC mixes are considered in the test program. This study aimed to compare SCC and FRSCC experimental results with conventional concrete experimental results. The steel strains within the high moment regions, the concrete surface strains at the tensile steel level, deflection at the mid-span, crack widths and crack spacing were recorded throughout the testing period. Experimental results show that hybrid fibre reinforced SCC slabs demonstrated minimum instantaneous and time-dependent crack widths and steel fibre reinforced SCC slabs presented minimum final deflection.

Fabrication of Drawing Wire for Cold Rolling Mill using Tungsten Carbide Multi-Stage Dies (초경 다단 다이를 적용한 냉간 압조용 인발 선재 제조)

  • Park, D.H.;Hyun, K.H.;Lee, M.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.97-102
    • /
    • 2020
  • Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through multi-stage drawing dies. The aim of this study is to fabricate a drawing wire using 2 stage drawing process. The finite element analysis of wire drawing was conducted to validate the efficiency of the designed process and the experiment was performed to validate the designed wire drawing process using 2 stage tungsten carbide die. Dry lubricant with powder was applied for producing a wire of desired diameter. Finally, a drawing wire using 2 stage die for cold rolling mill was developed.

3-D resist profile simulation using string model on E-beam lithography (전자빔 리토그라피에서 스트링모델을 이용한 3차원 리지스트 프로파일 시뮬레이션)

  • 서태원;함영목;전국진;이종덕
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.144-150
    • /
    • 1996
  • The purpose of this paper is to develop a simulation program to predict resist prifile in electron-beam lithography, where the main issue is proximity effect. The simualtion program composes of monte-carlo simulation, exposure simulation and development simulation. In nonte-carlo simulation, the absorbed energy in the resist is calculated when one electron is incident into resist, using hybrid model on the basis of the rutherford differential scattering cross section and moller theory. In exposure simulation, the absorbed energy in the resist is calculated when electrons are incident in exposure pattern. In the program, the developed profile depending on time is obtained by string model. The 0.2$\mu$m and the 0.3$\mu$m line and space patterns are experimentally delineated and compared to the simulation results to check the relevance of the program.

  • PDF