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Finite Element Analysis for Vibration of Laminated Plate
Using a Consistent Discrete Theory
Part II : Finite Element Formulation and Implementations
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Abstract

Based on a variational principle of the consistent shear deformable discrete laminate theory derived
in the companion paper Part I, a finite element procedure for the vibration analysis of laminated com-
posite plates is presented. The present formulation takes the in-plane displacements of an arbitrary
layer, the rotations of the cross section of each layer and tranverse displacement of the plate as the
state variables at a nodal point of finite element, resulting in total nodal degree of freedom of 2(n+1)
+1 for the n-layered laminate. Thus, it allows to specify displacement boundary conditions of layer
stretching and /or rotation of layer cross sections around the plate edge and /or lateral displacement.
The developed procedure is applied to the free vibration problem for sandwitch-type hybrid laminates
composed of layers with drastically different material properties whose elasticity solutions are known.
Comparison of analysis results with other FEM solutions showed that the present formulation yields
better accuracy.
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1. INTRODUCTION

In the design of structures composed of ad-
vanced fiber-reinforced composite laminates, it
is essential to predict mechanical behavior ac-
curately. Analytical solutions of the elasticity
equations or plate equations have been obtain-
ed for some static and dynamic problems with
simple lamination scheme and geometry[1-6].
For laminated plates with arbitrary stacking
sequence and irregular configuration, however,
the problem becomes intractable due to the
complexity of its governing equations. This
has motivated a considerable research effort to
develop efficient and reliable numerical sol-
ution techniques such as finite element pro-
cedure,

Since Pryor and Barker{[7] initiated the de-
velopment of finite element procedure for the
analysis of laminated plates, an enormous ef-
fort has been made to propose various FEM
procedures using different techniques as well
as laminate theories. Mawenya and Davis[8]
and Panda and Natarajan[9] used the quad-
ratic shell elements of Ahmad et al.[10] to
analyze the bending of multilayer plates. Mau
et al.[11, 12] and Spilker et al.[13] applied the
so-called hybrid formulations to the static and
dynamic analysis of laminated plates. Mixed
formulations were also presented by Noor and
Mathers[14, 15] for the study of vibration
problems. Reddy[16] applied penalty method
to the static and dynamic analysis of laminated
composite plates. However, all these works
were based on the first order shear deformable
theory(FSDT) by Yang et al.[17], which has
an intrinsic deficiency in incorporating local
shear deformation accurately, resulting in sig-
nificant error when shear rigidities of adjacent
layers are much different.

To remove the error from deficiencies of

FSDT in stress resolution as well as global be-
haviour, more refined theories have been util-
ized as the basis for finite element formula-
tions. Using a simple higher-order laminate
theory[18], Putcha and Reddy[19] presented a
mixed-type FEM procedure for the dynamic
and stability analysis of laminated composites.
Reddy et al.[20] also developed a finite el-
ement procedure based on Srinivas' discrete
laminate theory[21] and studied dynamic char-
acteristics of laminated plates. However, Srin-
ivas’ theory does not ensure the interlaminar
continuity of the transverse shear stresses.
Recently, Peseux and Dubugeon[22] and Liau
and Tsai[23] applied Hellinger-Reissner mixed
variational functional to develop the finite el-
ement procedures which satisfy the transverse
shear stress continuity at the layer interface.
These procedures with 5N nodal degree of
freedom where N is number of layers appeared
to yield reasonably good shear stress resolu-
tions. For the thick laminated with a large
number of layers, Zywicz[24] proposed a hom-
ogenization method of material properties, in
which laminate stiffness is represented with
polynomial functions so as to account for the
layer moduli, but continuities of the transverse
shear stresses and in-plane displacements are
satisfied. Advantage of this approach is that
finite element has constant number of nodal
degree of freedom regardless number of layers.
In addition, Lee and Liu[25] used Pagano’s
so-called ‘Global-Local model’[26] for the fi-
nite element formulation, but the results ap-
peared to be ‘not really exact’ in predicting
transverse shear stress distribution through
thickness of a laminate,

In this paper, we present a finite element
procedure for the dynamic analysis of laminat-
ed plates based on the discrete laminated plate
theory which incorporates the effect of trans-
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verse shear deformations in a variationally con-
sistent manner[27]. As the basis of finite el-
ement formulation, a variational principle de-
rived in the companion paper[28] is used. The
developed procedure is applied for the analysis
of vibration characteristics of laminated com-
posite plates whose elasticity solutions are
available and the results are compared with
other works.

2. VARIATIONAL PRINCIPLE

A usual finite element procedure for the sol-
ution of initial-boundary value problem is to
discretize the spatial domain by finite element
method and to use other technique, e.g., di-
rect integration or mode superposition method,
to solve resulting discretized system of equa-

tions in time domain. In connection with spat-

ial discretization, the governing functional
needs to be defined on each element and sum-
med up for all elements for the finite element
representation.

Over an element, the govening functional Q
given in Ref.[28], which is defined in terms of
displacement field variables can be written as
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where S%, Sk, and Sk, are the intersections of
the boundary surface of an element with S, S%
and Sk, respectively. It is reminded that this

functional satisfies the kinematic relations and
displacement continuities in laminar surfaces.

For spatial discretization of this functional,
it is assumed that the field variables are inter-
polated over an element domain as

* = [(b]k ¢E]T (2)

and U(t), ®*(t), W(t) are the vector functions
of time defined at the nodal points and H,, Hy,

H,, respectively, the matrices of spatial in-

terpolation functions for the field variables
indicated by subscripts. Also, the generalized
strains may be expressed as

T, U(t)
= T/o 1)
T W(t) + HI® (1)

where
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and T, T, and T; are, respectively, the trans-

formation matrices derived from the displace-
ment cement interpolation functions H,, H,

and H,, by suitable differentiation and reorgan-

ization of terms.
Substituting (2) and (3) into (1), the spatial-
ly discretized governing function is obtained.

"Z{UIM‘ ‘U+UTM‘ .Z‘ @' +Z ,\1A .Zlm,

+{O) ML, 0+ WML, * W 42U M

U‘R
k-1

k-t
+23 o) My, TO AT UTKL, TU 4200 UK, S o

-1
k.t

r*Zp( @)K, *Ttm’ﬂ (o) Kk2,,
o

oD

UKy, e 208 (0K, o)

*B
el

—t* \_‘{\\’YK‘ \"1"+7“TZK‘ |

=l =l

x" &k
K5, o
DALY
+-Z{r°v“r*+1”'b:+v:):'z (@) *n* + (@) *r
Al i

*I‘(‘T’L)T'gk+( ) ‘b‘+t‘“'7‘f‘+“r‘b }

+2HUT W (P Py T e ¢?, Ny

_ T e ! Y ;
203 fu 'R:,+f__’t,(o) Ry +(0) *REAWIORE)  (4)

kol

Definitions of matrices in this spatially discret-
ized functional are given in Appendix A.

3. SEMIDISCRETE EQUATIONS OF MOTION
To obtain the semidiscrete equations of mo-
tion of laminated plate, it is convenient to writ-

e the spatially discretized wvariational func-
tional (4) in matrix form as

- T T
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Here, element of the submatrices of S, and
the load vector R, are explicitly given in Ap-
pendix B. From Eq.(5), it is seen that the no-
dal degree of freedom for a laminate with n lay-
ers is equal to 2{n+1)+1. The spatially dis-
cretized variational functional of global system

is given by
m
Q=30 =-X"$*X +2X"*R (6)
e

where X is the vector of values of field vari-
ables at the system nodal points, R is the set
of corresponding “forcing” quantities and S is
the system matrix corresponding to S, for an
element. Here, summation in (6) is not al-
gebraic sum, but rather indicates the matrix
assembly following usual procedure. Vanishing
of the differential of Q in (6) with respect to
X gives the set of equations.
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Differentiating (7) twice with respect to time,
we obtain the semidiscrete equations of mo-

tion,

MX + KX =R (8)

where M, K are, respectively, mass and stiff-
ness matrices, and superposed dot denotes
time derivative. In this equation, inherent ma-
terial damping was not allowed for and may be
introduced in terms of equivalent viscous dam-
ping which is proportional to mass and stiff-
ness matrices. Also, it is worthwhile to note
that Eq.(8) reduces to the equations for the
static case if the inertial term is omitted.

4. NUMERICAL IMPLEMENTATIONS

A finite element code was developed using
the proposed formulation and applied for the
analysis of vibration characteristics of laminat-
ed composite plates to test its performance.
The code incorporated the “Heterosis” el-
ement due to Hughes and Cohen[29], which is
a kind of composite element employing
eight-node serendipity and nine-node Lagrange
interpolation functions for the field variables w

and u,, 4, respectively. To avoid “shear lock-

ing” phenomenon, selective /reduced Gaussian
integration was utilized.

The first problem tested was a simply sup-
ported sandwitch-type orthotropic laminated
plate composed of three layers as shown in
Fig. 1, whose elasticity solution was given by
Srinivas and Rao[4]. Since the plate had bi-
axial symmetry with respect to x,— and
x,-axis, only one quadrant of the platform was
discretized and shown along with boundary con-
ditions in Fig. 2. Top and bottom layers were
assumed to have the same thickness and ma-
terial properties while the thickness and ma-
terial properties of the middle layer are differ-
ent. For this laminate, three different sets of
material properties given in Table 1 were con-
sidered, in which the ratio of reduced elastic
constants{30] of the middle layer to those of
the outer layers was 1, 10 and 50, respectively.
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Fig. 1 Platform and Cross Section of laminated Plate
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Fig. 2 Finite Element Model of a Quadrant of Plate

Table 1. Lamination Data for Numerical Test

CASE|[t, /h [ty /h |ty /h o' /o] 0/ p?] Qs / Q| Qs / Qs

1 01108 101! 01 | 1.0 1 1
1l 0110801101110 10 10
M 101:08101]01] 10 0 | 50

*

For all layers, ratios of orthotropic elastic constants
were :

Qu Qi Qe Qu i Qs : Qe
=3.802:0.879:1.996:1,015:0.608:1.0

Table 2 shows the non-dimensionalized funda-
mental frequency obtained using 4-, 16- and 36-
element mesh. For comparison, elasticity solu-
tions and the finite element solutions based on
Srinivas theory[21] with the shear correction
factor k=5 /6 were given together. With 16-el-
ement mesh, the present results are in good
agreement with elasticity solutions, showing

Table 2. Non-dimensionalized fundamental frequency 2 by
: (a) present formulation, {b) Srinivas’ laminate
theory, (c) elasticity theory

Mesh | CASEI CASE Il CASE Il
Error Error Error
4 (a) |0.094697 | 2.4% |0.196820| 2.9% |0.310970| 3.8%
(b) [0.004980 | 2.7% (0.197100| 3.0% |0.314980 | 5.1% )
16 (a) 10.092592 | 0.5% [0.194720| 1.8% {0.309190 | 3.2%
i b) 100931701 0.7% 10195840 | 2.3% |0.313050 | 4.5%
% (a) 10.092900 | 0.4% [0.194630| 1.7% |0.309110 ! 3.1%
5.0} ——
! (b) [0.093410 | 0.7% |0.198050 | 3.5% 0.322?20\ 7.6%
(c) 10.092480 0.191320 10.299540
I p.
* ).:mh\/ ij where w 1s natural frequency,
66

percentage error was 0.5%, 1.8% and 3.2% for
the case I, II and Ill, respectively. The 16-el-
ement mesh yielded much improved results
over the 4 element mesh, but there was no no-
ticeable improvement by 36 element mesh over
16 element mesh.

From the comparison of finite element solu-
tions based on the present formulation and
Srinivas’ theory, it is seen that the latter over-
predictes natural frequency more than the for-
mer. Difference increases as the difference in
stiffness of the outer layers and the inner lay-
er grows. This implies that effect of the con-
sistent incorporation of shear deformation in
numerical formulation becomes more pronoun-
ced where the difference in material properties
between layers 1s large such as hybrid laminat-
€s.

Reddy and Kuppusamy[20] also presented a
finite element formulation using the Srinivas’
theory and solved free vibration problem of
three layered simply supported laminates whos-
e each layer is isotropic and has the same ma-
terial properties with Poisson’s ratio »=0.3.
The code developed herein was also applied to
Reddy’s problem. The non-dimensionalized fun-
damental frequencies obtained by Reddy and
Kuppusamy and the present analysis are show-
n in Table 3 along with elasticity solution, Ap-
parently, the present analysis yields much
more accurate results than Reddy’s, even with

a coarse mesh.

Table 3. Comparison of Reddy’s and Present FEM Solution
for Non-dimensionalized Natural Frequency 4 of
Isotropic Laminate

Exact Sol. [Reddy’s Sol. Present Results
(Srinivas) [(4X4 mesh)| 2x2 mesh | 4 X4 mesh
A 0.09315 0.0963 0.0951 0.09319

Error — 3.3% 2.2% 0.04%
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These numerical tests clearly show that the
present finite element formulation based on
the discrete laminate theory, which incorpor-
ates the transverse shear deformation in con-
sistent manner, proves to be more accurate
than earlier ones, e.g. Srinivas[21], Sun(31],
etc., in predicting natural frequencies of lam-
inated composite plates. Although further
examination of the performance of the present
model for other types of laminated plates 1S
not possible since elasticity solutions available
are limited, it is apparent that it is expected to
yield better accuracy in other problems. In con-
sequence, use of the presented procedure ap-
pears to be desirable to ensure general re-

liability of vibration analysis.
5. CONCLUSION

Using a variational principle derived in pre-
vious paper, which is based upon a consistent
shear deformable discrete laminate theory, a
displacement finite element formulation for
the dynamic analysis of laminated plates has
been presented and tested. As the nodal field
variables, in-plane displacement of a layer, rot-
ations of the cross sections of the remaining
layers and transverse displacement of the plat-
e were taken. This enables one the specify dis-
placement boundary conditions layerwisely
along plate edge surface. Performance of the
formulation presented herein was tested and
verified for the sandwitch-type laminated com-
posite plate whose elasticity solution is known.
Although the numerical test has been done for
limited cases, it was apparent to yield excel-
lent accuracy. Comparison of the test results

also proved that the present formulation is bet-

ter than other models. It is expected that the
advantage of the developed code can be more

pronounced in multilayered hybrid laminates,

in which the case the effect of transverse

shear deformation appears significantly.
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APPENDIX A :
Matrices and vectors in the spatially discret-

ized functional (4) are defined as below. Her-
ein, A¥, Bk Dk are, respectively, the matrix

form of transverse shear stiffness Ak;; B;

and Dk given in Eq.(22) of the companion

paper[28], which represent the shear coupling
between layers and are determined by layer

material properties, fiber orientations, etc.
[27].
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APPENDIX B :
In the semidiscretized functional (5), ele-

ments of the load vector and system matrix

are given as below.

S, = E(":-*"K:u’
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