• Title/Summary/Keyword: Hybrid coating

Search Result 315, Processing Time 0.029 seconds

Tribological behaviors of polymer coated carbon composite with small surface grooves (코팅된 요철표면을 가지는 탄소/에폭시 복합재료의 마찰 및 마모 특성)

  • Kim, Seong-Su;Lee, Hak-Gu;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.107-110
    • /
    • 2005
  • Tribological behaviors of carbon epoxy composites whose surfaces have many small grooves were compared with respect to coating method under dry sliding and water lubricating conditions. The surface coating materials were epoxy (Ep) and polyethylene (PE) mixed with self-lubricating $MoS_2$ and PTFE powders. The wear morphology of the composites observed with a scanning electron microscopic (SEM) revealed that the surface coating layer mixed with the self-lubricating powder on the grooved surface significantly improved the wear resistance under water lubricating condition because the surface coating layer blocked water to penetrate the composite surface and the self-lubricating powder reduced the wear on the coating by suppressing the generation of blisters.

  • PDF

Evaluation of Bond Strength in FRP Hybrid Bar Affected by Freezing/thawing Test and UV Rays (동결융해 및 UV 폭로시험을 거친 FRP Hybrid Bar의 인발거동특성 평가)

  • Park, Jae-Sung;Yoon, Yong-Sik;Park, Ki-Tae;Kwon, Sung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.53-58
    • /
    • 2017
  • FRP Hybrid Bar, composed of an embedded steel and the coated composites with epoxy and glass fiber, is an effective construction material with tension-hardening performance and lightweight. The epoxy exposed to UV(Ultra Violet Rays) and FT(Freezing and Thawing) action easily shows a surface deterioration, which can cause degradation of bonding strength between inside-steel and outside-concrete. In the present work, surface inspection for 3 different samples of normal steel, FRP Hybrid Bar before UV, and FRP Hybrid Bar after UV test was performed, then concrete samples with 3 reinforcement types were prepared for accelerated FT test. Through visual inspection on 3 typed reinforcement, no significant deterioration like chalking was evaluated. The results from FT test to 120 and 180 cycles showed FRP Hybrid Bar exposed to UV test has higher bonding strength than normal steel by 106.3% due to enlarged bond area by silica coating. The 3 cases showed a similar bond strength tendency with increasing FT cycles, however a relatively big deviations of bond strength were evaluated in FRP Hybrid Bar after UV test due to loss of silica coating.

Comparison on Mechanical Properties of SSBR Composites Reinforced by Modified Carbon black, Silica, and Starch

  • Lee, Dam-Hee;Li, Xiang Xu;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.175-180
    • /
    • 2018
  • Solution-styrene-butadiene rubber (SSBR) composites were manufactured using four kinds of fillers: silica-silane coated carbon black (SC-CB) hybrid, starch-SC-CB hybrid, pure silica, and pure starch. The influence of filler type on the mechanical properties of the rubber matrix was studied in this work. SC-CB was prepared by silane-graft-coating using vinyl triethoxy silane and carbon black, which enhanced the dispersion effect between the rubber matrix and the filler, and improved the mechanical properties of the compounds. The morphology of the composites was observed by field-emission scanning electron microscopy (FE-SEM). The thermal decomposition behavior of the composites was determined by thermogravimetric analysis (TGA), and the crosslinking behavior of the composites was tested using a rubber process analyzer (RPA). The hardness, tensile strength, swelling ratio, and gas transmittance rate of the composites were evaluated according to ASTM. The test results revealed that with the addition of SC-CB, the hybrid fillers, especially those blended with silica, showed a better reinforcement effect, the highest hardness and tensile strength, and stable thermal decomposition behavior. This implies that the silica-SC-CB hybrid filler has a notable mechanical reinforcement effect on the SSBR matrix. Because of self-crosslinking during its synthesis, the starch-SC-CB hybrid filler produced the most dense matrix, which improved the anti-gas transmittance property. The composites with the hybrid fillers had better anti-swelling properties as compared to the neat SSBR composite, which was due to the hydrophilicity of silica and starch.

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Carbon Nanotube-Copper Hybrid Thin Film on Flexible Substrate fabricated by Ultrasonic Spray Coating and Laser Sintering Process (초음파 스프레이 코팅과 레이저 소결 공정에 의해 유연 기판 표면에 형성된 탄소나노튜브-구리 하이브리드 박막)

  • Park, Chae-Won;Gwon, Jin-Hyeong;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.135-135
    • /
    • 2016
  • Recently flexible electrode materials have attracted attention in various electrical devices. In general, copper(Cu) is widely used electrical conductive material. However, Cu film showed drastically reduction of electrical conductivities under an applied tensile strain of 10%. These poor mechanical characteristics of Cu have difficulty applying in flexible electronic applications. In this study, mechanical flexibilities of Cu thin film were improved by hybridization with carbon nanotubes(CNTs) and laser sintering. First, thin carbon nanotube films were fabricated on a flexible polyethylene terephthalate(PET) substrate by using ultrasonic spray coating of CNT dispersed solution. After then, physically connected CNT-Cu NPs films were formed by utilizing ultrasonic spray coating of Cu nanoparticles dispersed solution on prepared CNT thin films. Finally, CNT-Cu thin films were firmly connected by laser sintering. Therefore, electrical stabilities under mechanical stress of CNT-Cu hybrid thin films were compared with Cu thin films fabricated under same conditions to confirm improvement of mechanical flexibilities by hybridization of CNT and Cu NPs.

  • PDF

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

A study on the synthesis and mechanical properties of WC/C multilayered films (WC/C 다층박막의 합성 및 기계적 특성에 관한 연구)

  • 명현식;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • WC/C multilayered films were deposited by arc ion plating and magnetron sputter hybrid system with various $C_2$H$_2$ flow rates and bias voltages. The coatings have been characterized with respect to their chemical composition (Glow Discharge Optical Emission Spectroscopy), hardness(Knoop micro-hardness), residual stress(Laser beam bending) and friction coefficient(Ball on disc type wear test). Deposition rate, microhardness and residual stress of WC/C films were observed to increase with increasing the $C_2$$H_2$ flow rates. The highest hardness and residual stress were measured to be 26.5 GPa and 1.1GPa for, WC/C film deposited at substrate bias of -100V. WC/C multilayered film was obtained very low friction coefficient(~0.1).

The influence of preparation condition on optical property of sol-gel derived hybrid organic-inorganic silica glass thin films (제작조건에 따른 졸-겔 복합 실리카 박막의 광학적 성질 변화)

  • 정재완
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.255-260
    • /
    • 2000
  • We report that the crack-free organic-inorganic hybrid silica thin films were fabricated by sol-gel process using organometallic compounds as a precursor and that we have established very reproducible fabrication condition with systematic investigation of thickness and refractive index variations for various control parameters, such as, coating type, coating speed, chemical composition, prebake and postbake temperature. Additionally, we measured and compared the change of optical property with the UV exposure dose for three different kinds of photoinitiators. Furthermore, the fabrication of Ix4 MMI optical power splitter using the sol-gel thin film provides the possibility of various applications to the optical waveguide devices. vices.

  • PDF

Properties of Coating Films Synthesized from Colloidal Silica and UV-curable Acrylate resin (UV경화형 아크릴 수지와 콜로이드 실리카로 합성된 코팅막의 특성)

  • Kang, Young-Taec;Kang, Dong-Pil;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.551-552
    • /
    • 2007
  • Coating films were prepared from silane-terminated Colloidal silaca(CS) and UV-curable acrylate resin. The silane-terminated CSs were synthesized from CS and methyltrimethoxysilane(MTMS) and then treated with 3-methacryloxypropyltrimethoxysilane(MAPTMS)/3-glycidoxypropyltrimethoxysilane( GPTMS)/vinyltrimethoxysilane(VTMS) by sol-gel process, respectively. The silane-terminated CS and acrylate resin were hybridized using UV-curing system. Thin films of hybrid material were prepared using spin coater on the glass. Their hardness, contact angle and transmittance improved with the addition of silane-terminated CS.

  • PDF