• Title/Summary/Keyword: Hybrid automatic repeat request (HARQ)

Search Result 16, Processing Time 0.016 seconds

An Algorithm for Iterative Detection and Decoding MIMO-OFDM HARQ with Antenna Scheduling

  • Kim, Kyoo-Hyun;Kang, Seung-Won;Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.4
    • /
    • pp.194-208
    • /
    • 2008
  • In this paper, a multiple-input-multiple-output (MIMO) hybrid-automatic repeat request (HARQ) algorithm with antenna scheduling is proposed. It retransmits the packet using scheduled transmit antennas according to the state of the communication link, instead of retransmitting the packet via the same antennas. As a result, a combination of conventional HARQ systems, viz. chase combining (CC) and incremental redundancy (IR) are used to achieve better performance and lower redundancy. The proposed MIMO-OFDM HARQ system with antenna scheduling is shown to be superior to conventional MIMO HARQ systems, due to its spatial diversity gain.

Error-detection-coding-aided iterative hard decision interference cancellation for MIMO systems with HARQ

  • Park, Sangjoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1016-1030
    • /
    • 2018
  • In this paper, an error-detection-coding-aided iterative hard decision interference cancellation (EDC-IHIC) scheme for multiple-input multiple-output systems employing hybrid automatic repeat request (HARQ) for multi-packet transmission is developed and investigated. In the EDC-IHIC scheme, only packets identified as error-free by the EDC are submitted to the interference cancellation (IC) stage for cancellation from the received signals. Therefore, the possibility of error propagation, including inter-transmission error propagation, can be eliminated using EDC-IHIC. Because EDC must be implemented in systems that employ HARQ to determine packet retransmission, error propagation can be prevented without the need for additional redundancy. The results of simulations conducted herein verify that the EDC-IHIC scheme outperforms conventional hard decision IC schemes in terms of the packet error rate in various environments.

Performance Evaluation of a HARQ-ARQ Interaction Scheme for Reliable Communications in Marine Communication Networks (해양 통신 네트워크에서 안정적 통신을 위한 HARQ-ARQ interaction 기법의 성능 평가)

  • Son, Jaekwang;Lee, Seong Ro;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1201-1208
    • /
    • 2014
  • As the wireless communication technologies are being studied for application to marine communication networks in a fusion of marine industries and IT technology, this paper proposes a HARQ-ARQ interaction scheme for reliable communication between the smart ships. Moreover, this paper evaluates the performance of the HARQ-ARQ interaction schemes through the computer simulation. In the HARQ-ARQ interaction scheme for marine network systems, as a HARQ acknowledgement is implicitly utilized as an ARQ acknowledgement. Hence, the HARQ-ARQ interaction scheme can reduce the packet delay. However, the HARQ-ARQ interaction scheme has problems caused by the error of HARQ feedback messages. Hence, this paper considers the effect of error of HARQ feedback messages on the performance of the HARQ-ARQ interaction scheme, in marine network systems. The simulation results show that the HARQ-ARQ interaction scheme can improve the delay performance of the ships in the marine network systems.

Analysis of Rate-Compatible Punctured Serial Concatenated Convolutional Codes Based on SNR Evolution

  • Shin Seung-Kyu;Shin Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.324-330
    • /
    • 2006
  • The next generation mobile communication systems require error correcting schemes that can be adaptable to various code rates and lengths with negligible performance degradation. Serial concatenated convolutional codes can be a good candidate satisfying these requirements. In this paper, we propose new rate-compatible punctured serial concatenated convolutional code (RCPSCCC) which performs better than the RCPSCCC proposed by Chandran and Valenti in the sense of the rate compatibility. These codes are evaluated and analyzed by using computer simulation and SNR evolution technique. As their application, Type-II hybrid automatic repeat request (HARQ) schemes using both RCPSCCCs are constructed and new RCPSCCC is shown to have better throughput.

Bandwidth-Efficient Selective Retransmission for MIMO-OFDM Systems

  • Zia, Muhammad;Kiani, Tamoor;Saqib, Nazar A.;Shah, Tariq;Mahmood, Hasan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.66-76
    • /
    • 2015
  • In this work, we propose an efficient selective retransmission method for multiple-input and multiple-output (MIMO) wireless systems under orthogonal frequency-division multiplexing (OFDM) signaling. A typical received OFDM frame may have some symbols in error, which results in a retransmission of the entire frame. Such a retransmission is often unnecessary, and to avoid this, we propose a method to selectively retransmit symbols that correspond to poor-quality subcarriers. We use the condition numbers of the subcarrier channel matrices of the MIMO-OFDM system as a quality measure. The proposed scheme is embedded in the modulation layer and is independent of conventional hybrid automatic repeat request (HARQ) methods. The receiver integrates the original OFDM and the punctured retransmitted OFDM signals for more reliable detection. The targeted retransmission results in fewer negative acknowledgements from conventional HARQ algorithms, which results in increasing bandwidth and power efficiency. We investigate the efficacy of the proposed method for optimal and suboptimal receivers. The simulation results demonstrate the efficacy of the proposed method on throughput for MIMO-OFDM systems.

A Retransmission Power Adjustment Scheme for Performance Enhancement in DS/SSMA ALOHA with Packet Combining

  • Seo Hanbyul;Park Seongyong;Lee Byeong Gi
    • Journal of Communications and Networks
    • /
    • v.7 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • In this paper, we present a retransmission power adjustment (RPA) scheme for DS/SSMA ALOHA packet radio systems with packet combining. In the proposed RPA scheme, retransmission power is adjusted in such a way that the erroneously-received packet can be recovered with a minimized interference to other user packets. We analyze the performance of the system with the RPA by employing the equilibrium point analysis (EPA), and confirm that the results obtained from the EPA are very close to the simulation results in low power cases. Simulation results demonstrate that the RPA scheme brings forth performance gain in the throughput and the average delay while saving a significant amount of transmission power. We also investigate the stability of the system from the EPA results, and conclude that the system becomes stable as the offered load increases or the level of retransmission power decreases.