• 제목/요약/키워드: Hybrid Techniques

Search Result 744, Processing Time 0.023 seconds

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

The Gripping Force Control of Robot Manipulator Using the Repeated Learning Function Techniques (반복 학습기능을 이용한 로봇 매니퓰레이터의 파지력제어)

  • Kim, Tea-Kwan;Baek, Seung-Hack;Kim, Tea-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • In this paper, the repeated learning technique of neural network was used for gripping force control algorithm. The hybrid control system was introduced and the manipulator's finger reorganized form 2 ea to 3 ea for comfortable gripping. The data was obtained using the gripping force of repeated learning techniques. In the fucture, the adjustable gripping force will be obtained and improved the accuracy using the artificial intelligence techniques.

Analysis of inconsistent source sampling in monte carlo weight-window variance reduction methods

  • Griesheimer, David P.;Sandhu, Virinder S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1172-1180
    • /
    • 2017
  • The application of Monte Carlo (MC) to large-scale fixed-source problems has recently become possible with new hybrid methods that automate generation of parameters for variance reduction techniques. Two common variance reduction techniques, weight windows and source biasing, have been automated and popularized by the consistent adjoint-driven importance sampling (CADIS) method. This method uses the adjoint solution from an inexpensive deterministic calculation to define a consistent set of weight windows and source particles for a subsequent MC calculation. One of the motivations for source consistency is to avoid the splitting or rouletting of particles at birth, which requires computational resources. However, it is not always possible or desirable to implement such consistency, which results in inconsistent source biasing. This paper develops an original framework that mathematically expresses the coupling of the weight window and source biasing techniques, allowing the authors to explore the impact of inconsistent source sampling on the variance of MC results. A numerical experiment supports this new framework and suggests that certain classes of problems may be relatively insensitive to inconsistent source sampling schemes with moderate levels of splitting and rouletting.

Realistic Rainfall Effect Algorithm Comparison and Analysis (사실적인 비 내리는 효과 알고리즘 비교 및 분석)

  • Seo, Taeuk;Sung, Mankyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • Realistic rendering of natural phenomena is a difficult problem. Many environmental factors must be considered to simulate this phenomenon. At the same time, we need to think about their computational complexity to be simulated with computer algorithm One of the most difficult problems in creating weather conditions is the rain. To simulate realistic rainy scene, you have to consider the physical properties of rain and the environmental where the rain is falling down as well. In this paper, we survey the modeling and rendering techniques for realistic rainfall scenes from three different aspects. First, we list up techniques for modeling raindrop dynamics. Second, we survey the rendering techniques that render the raindrop in the environment. Third, we take a look at the hybrid methods that combines the rendering the modeling at the same time. For each aspect, we compare the algorithms in terms of implementation and their speciality.

Recent Developments in Correlative Super-Resolution Fluorescence Microscopy and Electron Microscopy

  • Jeong, Dokyung;Kim, Doory
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.

Multi-channel Active Noise Control Using Subband Hybrid Adaptive Filters (서브밴드 하이브리드 적응필터를 이용한 다중채널 능동소음제어)

  • 남현도;김덕중;박용식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.94-101
    • /
    • 2000
  • In this paper, a multi-channel active noise control(ANC) system using subband hybrid control techniques is proposed. Subband techniques could reduce computational burden and improve the performance of ANC systems by dividing several frequency subband and adjusting adaptive filter coefficients. So it can effectively cancel noises at wanted frequency range and use lower order adaptive filter than the existing algorithms. The adjoint LMS algorithm, which prefilter the error signals instead of the divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of the subband adaptive systems. To improve performance of the ANC system, a weighted hybrid control technique, which has weightily properties of feedforward control systems and feedback control systems, is applied. This algorithm shows higher stability and good noise attenuation property in broad band ANC systems. Computer simulations were performed to show the effectiveness of the proposed algorithm.

  • PDF

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber

  • Armaghani, Danial Jahed;Mirzaei, Fatemeh;Shariati, Mahdi;Trung, Nguyen Thoi;Shariati, Morteza;Trnavac, Dragana
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-205
    • /
    • 2020
  • Soil shear strength parameters play a remarkable role in designing geotechnical structures such as retaining wall and dam. This study puts an effort to propose two accurate and practical predictive models of soil shear strength parameters via hybrid artificial neural network (ANN)-based models namely genetic algorithm (GA)-ANN and particle swarm optimization (PSO)-ANN. To reach the aim of this study, a series of consolidated undrained Triaxial tests were conducted to survey inherent strength increase due to addition of polypropylene fibers to sandy soil. Fiber material with different lengths and percentages were considered to be mixed with sandy soil to evaluate cohesion (as one of shear strength parameter) values. The obtained results from laboratory tests showed that fiber percentage, fiber length, deviator stress and pore water pressure have a significant impact on cohesion values and due to that, these parameters were selected as model inputs. Many GA-ANN and PSO-ANN models were constructed based on the most effective parameters of these models. Based on the simulation results and the computed indices' values, it is observed that the developed GA-ANN model with training and testing coefficient of determination values of 0.957 and 0.950, respectively, performs better than the proposed PSO-ANN model giving coefficient of determination values of 0.938 and 0.943 for training and testing sets, respectively. Therefore, GA-ANN can provide a new applicable model to effectively predict cohesion of fiber-reinforced sandy soil.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Image Steganography for Hiding Hangul Messages in Hybrid Technique using Variable ShiftRows (가변 ShiftRows를 이용한 하이브리드 기법에서 한글 메시지 은닉을 위한 이미지 스테가노그래피)

  • Ji, Seon-su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2022
  • Information plays an important role in modern society. Most of the information is processed and moved in the digital space. In cyberspace, confidential communication based on resistance and security is fundamental. It is essential to protect the information sent and received over the network. However, information may be leaked and forged by unauthorized users. The effectiveness of the existing protection system decreases as an innovative technique is applied to identify the communication contents by a third party. Steganography is a technique for inserting secret information into a specific area of a medium. Stegganography and steganalysis techniques are at odds with each other. A new and sophisticatedly implemented system is needed to cope with the advanced steganalysis. To enhance step-by-step diffusion and irregularity, I propose a hybrid implementation technique of image steganography for Hangul messages based on layered encryption and variable ShiftRows. PSNR was calculated to measure the proposed steganography efficiency and performance. Compared to the basic LSB technique, it was shown that the diffusion and randomness can be increased even though the PSNR decreased by 1.45%.