• Title/Summary/Keyword: Hybrid Self Organizing Map

Search Result 15, Processing Time 0.026 seconds

Hybrid Self Organizing Map using Monte Carlo Computing

  • Jun Sung-Hae;Park Min-Jae;Oh Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

Malay Syllables Speech Recognition Using Hybrid Neural Network

  • Ahmad, Abdul Manan;Eng, Goh Kia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.287-289
    • /
    • 2005
  • This paper presents a hybrid neural network system which used a Self-Organizing Map and Multilayer Perceptron for the problem of Malay syllables speech recognition. The novel idea in this system is the usage of a two-dimension Self-organizing feature map as a sequential mapping function which transform the phonetic similarities or acoustic vector sequences of the speech frame into trajectories in a square matrix where elements take on binary values. This property simplifies the classification task. An MLP is then used to classify the trajectories that each syllable in the vocabulary corresponds to. The system performance was evaluated for recognition of 15 Malay common syllables. The overall performance of the recognizer showed to be 91.8%.

  • PDF

An Optimal Clustering using Hybrid Self Organizing Map

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.10-14
    • /
    • 2006
  • Many clustering methods have been studied. For the most part of these methods may be needed to determine the number of clusters. But, there are few methods for determining the number of population clusters objectively. It is difficult to determine the cluster size. In general, the number of clusters is decided by subjectively prior knowledge. Because the results of clustering depend on the number of clusters, it must be determined seriously. In this paper, we propose an efficient method for determining the number of clusters using hybrid' self organizing map and new criterion for evaluating the clustering result. In the experiment, we verify our model to compare other clustering methods using the data sets from UCI machine learning repository.

Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm (유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화)

  • 김현돈;조성배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.223-230
    • /
    • 2001
  • Since self-organizing map (SOM) preserves the topology of ordering in input spaces and trains itself by unsupervised algorithm, it is Llsed in many areas. However, SOM has a shortcoming: structure cannot be easily detcrmined without many trials-and-errors. Structure-adaptive self-orgnizing map (SASOM) which can adapt its structure as well as its weights overcome the shortcoming of self-organizing map: SASOM makes use of structure adaptation capability to place the nodes of prototype vectors into the pattern space accurately so as to make the decision boundmies as close to the class boundaries as possible. In this scheme, the initialization of weights of newly adapted nodes is important. This paper proposes a method which optimizes SASOM with genetic algorithm (GA) to determines the weight vector of newly split node. The leanling algorithm is a hybrid of unsupervised learning method and supervised learning method using LVQ algorithm. This proposed method not only shows higher performance than SASOM in terms of recognition rate and variation, but also preserves the topological order of input patterns well. Experiments with 2D pattern space data and handwritten digit database show that the proposed method is promising.

  • PDF

Self-Organizing Map for Blind Channel Equalization

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.6
    • /
    • pp.609-617
    • /
    • 2010
  • This paper is concerned with the use of a selforganizing map (SOM) to estimate the desired channel states of an unknown digital communication channel for blind equalization. The modification of SOM is accomplished by using the Bayesian likelihood fitness function and the relation between the desired channel states and channel output states. At the end of each clustering epoch, a set of estimated clusters for an unknown channel is chosen as a set of pre-defined desired channel states, and used to extract the channel output states. Next, all of the possible desired channel states are constructed by considering the combinations of extracted channel output states, and a set of the desired states characterized by the maximal value of the Bayesian fitness is subsequently selected for the next SOM clustering epoch. This modification of SOM makes it possible to search the optimal desired channel states of an unknown channel. In simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The performance of the proposed method is compared with those of the "conventional" SOM and an existing hybrid genetic algorithm. Relatively high accuracy and fast search speed have been achieved by using the proposed method.

Motion Planning and Control for Mobile Robot with SOFM

  • Yun, Seok-Min;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1039-1043
    • /
    • 2005
  • Despite the many significant advances made in robot architecture, the basic approaches are deliberative and reactive methods. They are quite different in recognizing outer environment and inner operating mechanism. For this reason, they have almost opposite characteristics. Later, researchers integrate these two approaches into hybrid architecture. In such architecture, Reactive module also called low-level motion control module have advantage in real-time reacting and sensing outer environment; Deliberative module also called high-level task planning module is good at planning task using world knowledge, reasoning and intelligent computing. This paper presents a framework of the integrated planning and control for mobile robot navigation. Unlike the existing hybrid architecture, it learns topological map from the world map by using MST (Minimum Spanning Tree)-based SOFM (Self-Organizing Feature Map) algorithm. High-level planning module plans simple tasks to low-level control module and low-level control module feedbacks the environment information to high-level planning module. This method allows for a tight integration between high-level and low-level modules, which provide real-time performance and strong adaptability and reactivity to outer environment and its unforeseen changes. This proposed framework is verified by simulation.

  • PDF

A Resource Clustering Method Considering Weight of Application Characteristic in Hybrid Cloud Environment (하이브리드 클라우드 환경에서의 응용 특성 가중치를 고려한 자원 군집화 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.481-486
    • /
    • 2017
  • There are many scientists who want to perform experiments in a cloud environment, and pay-per-use services allow scientists to pay only for cloud services that they need. However, it is difficult for scientists to select a suitable set of resources since those resources are comprised of various characteristics. Therefore, classification is needed to support the effective utilization of cloud resources. Thus, a dynamic resource clustering method is needed to reflect the characteristics of the application that scientists want to execute. This paper proposes a resource clustering analysis method that takes into account the characteristics of an application in a hybrid cloud environment. The resource clustering analysis applies a Self-Organizing Map and K-means algorithm to dynamically cluster similar resources. The results of the experiment indicate that the proposed method can classify a similar resource cluster by reflecting the application characteristics.

Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products (자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로)

  • Park, Do-Hyung;Chung, Jaekwon;Chung, Yeo Jin;Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.1-23
    • /
    • 2014
  • Market forecasting aims to estimate the sales volume of a product or service that is sold to consumers for a specific selling period. From the perspective of the enterprise, accurate market forecasting assists in determining the timing of new product introduction, product design, and establishing production plans and marketing strategies that enable a more efficient decision-making process. Moreover, accurate market forecasting enables governments to efficiently establish a national budget organization. This study aims to generate a market growth curve for ICT (information and communication technology) goods using past time series data; categorize products showing similar growth patterns; understand markets in the industry; and forecast the future outlook of such products. This study suggests the useful and meaningful process (or methodology) to identify the market growth pattern with quantitative growth model and data mining algorithm. The study employs the following methodology. At the first stage, past time series data are collected based on the target products or services of categorized industry. The data, such as the volume of sales and domestic consumption for a specific product or service, are collected from the relevant government ministry, the National Statistical Office, and other relevant government organizations. For collected data that may not be analyzed due to the lack of past data and the alteration of code names, data pre-processing work should be performed. At the second stage of this process, an optimal model for market forecasting should be selected. This model can be varied on the basis of the characteristics of each categorized industry. As this study is focused on the ICT industry, which has more frequent new technology appearances resulting in changes of the market structure, Logistic model, Gompertz model, and Bass model are selected. A hybrid model that combines different models can also be considered. The hybrid model considered for use in this study analyzes the size of the market potential through the Logistic and Gompertz models, and then the figures are used for the Bass model. The third stage of this process is to evaluate which model most accurately explains the data. In order to do this, the parameter should be estimated on the basis of the collected past time series data to generate the models' predictive value and calculate the root-mean squared error (RMSE). The model that shows the lowest average RMSE value for every product type is considered as the best model. At the fourth stage of this process, based on the estimated parameter value generated by the best model, a market growth pattern map is constructed with self-organizing map algorithm. A self-organizing map is learning with market pattern parameters for all products or services as input data, and the products or services are organized into an $N{\times}N$ map. The number of clusters increase from 2 to M, depending on the characteristics of the nodes on the map. The clusters are divided into zones, and the clusters with the ability to provide the most meaningful explanation are selected. Based on the final selection of clusters, the boundaries between the nodes are selected and, ultimately, the market growth pattern map is completed. The last step is to determine the final characteristics of the clusters as well as the market growth curve. The average of the market growth pattern parameters in the clusters is taken to be a representative figure. Using this figure, a growth curve is drawn for each cluster, and their characteristics are analyzed. Also, taking into consideration the product types in each cluster, their characteristics can be qualitatively generated. We expect that the process and system that this paper suggests can be used as a tool for forecasting demand in the ICT and other industries.

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

A Study on the Enhancement of Image Distortion for the Hybrid Fractal System with SOFM Vector Quantizer (SOFM 벡터 양자화기와 프랙탈 혼합 시스템의 영상 왜곡특성 향상에 관한 연구)

  • 김영정;김상희;박원우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2002
  • Fractal image compression can reduce the size of image data by the contractive mapping that is affine transformation to find the block(called as range block) which is the most similar to the original image. Even though fractal image compression is regarded as an efficient way to reduce the data size, it has high distortion rate and requires long encoding time. In this paper, we presented a hybrid fractal image compression system with the modified SOFM Vector Quantizer which uses improved competitive learning method. The simulation results showed that the VQ hybrid fractal using improved competitive loaming SOFM has better distortion rate than the VQ hybrid fractal using normal SOFM.

  • PDF