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ABSTRACT

Self Organizing Map(SOM) is a powerful neural network model for unsupervised learning. In many

clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is

the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our

paper proposes a method to overcome the drawback of SOM. As compared with the presented researches,

our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper.

Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the

improved performance of a hybrid SOM according to the experimental results using UCI machine learning

repository. In addition to, the number of clusters is determined by our hybrid SOM.

Key words :

1. Introduction

Automatic determination of the number of

population clusters is needed in the clustering
like
method,

K-means algorithm, hierarchical clustering

etc. Usually we have determined the
number of clusters subjectively. In this paper, we
proposed an method for automatic determination
of the number of clusters using Bayesian Self
Organizing Map(SOM) based fuzzy clustering.
That is, the SOM, Bayesian learning, and fuzzy

set logic were used in proposed algorithm for the

determination of optimal number of clusters. The

331

Hybrid Self Organizing Maps, MCMC, Optimal Computing

existing methods have had an uncertainty because
they have determined the number of clusters with
subjectivity. One of the gates to eliminate the
uncertainty is through the fuzzy set theory[13]. If
X is a collection of objects denoted generally by
X, then a fuzzy set A in X consists of a set of
x and its membership function. The membership
function can be expressed by values from 0 to 1
as the degree of truth that maps X to A.
However it is difficult to choose a suitable form
for the membership function. Nowadays, it is
common to determine the membership function

subjectively. Then this may make the problems
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more ambiguous in the machine learning, which
should resolve the uncertainty. In this paper, we
proposed an objective method to select the
membership function for determining the number
of clusters by heuristic approach using Bayesian
SOM. For illustration of our proposed method,
we considered examples with comparing other
clustering methods which are the SOM, K-means
algorithm and statistical clustering methods using
the data from UCI machine

sets learning

repository.
II. Related Works

The cluster is a set of adjacent objects in
training data. Objects in the same cluster have
close similarity and objects in other clusters have
dissimilarity. We use distance as a measure of
similarity between objects. The first ‘problem to
consider in clustering is to determine the number
of clusters. K-means algorithm requires an initial
number of clusters and hierarchical clustering
method also requires an optimal number of
clusters for stopping clustering process[4]. But it
is hard to find any objective algorithm to
determine the number of clusters. Most of them
are determined subjectively. So, we propose a
hybrid SOM using Monte Carlo computing for
solving the problems.

Let X is a nonempty set and x is an element of

X. A fuzzy set A is defined as follows[14].

A={(x,1,(x)|xe X} o)

Where, H.(X) is a membership function which

expresses a degree of inclusion of x into A. In

this paper, fuzzy set is used to determine the
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number of clusters[2]. The membership functions

of fuzzy set for clustering are computed

repeatedly by our hybrid SOM in given training
data. That is, X becomes a set of all possible
numbers of clusters and A becomes a fuzzy set

of M 4(x)

membership function for each possible cluster

appropriate  cluster size. is a
size. So, we decide the element with the largest
membership function in fuzzy set A to optimal
number of clusters. The neural network model by
Kohonen has two types which are SOM and
LVQ(learning vector quantization){7]. We used
SOM in this paper because SOM is an efficient
algorithm for clustering[5]. Though SOM requires
a size of feature maps, it does not need the
number of clusters. The SOM algorithm is

expressed in the followings[S].
HOI. A Hybrid Self Organizing Maps

Monte Carlo methods are computational
techniques that make use of random numbers.
The aims of Monte Carlo methods are to solve

one or both of the following problems. One is to
{x(i)};':l

probability distribution P(x). The other is to

generate  samples from a given

estimate expectations of functions under P(x).
Markov Chain Monte CarloMCMC) methods

have been used for many years to solve

problems in statistical physics, machine learning,
bioinformatics, and so forth[6]. MCMC methods
were especially introduced for computation in
Bayesian statistics. The assumptions concerning
the form of the distribution, such as normal
approximation are not made in MCMC. Each
node of the output layer achieves clustering by
competitive Each

learming from training data.
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object crisply belongs to only one exclusive

cluster after the last training. And the clustering
result is only one type because the weights have
fixed values in nodes of SOM after final
training. This result is usually not optimal[8, 9,
10,11] and it is impossible to repeat the different
experiments to determine membership function of
fuzzy set. In this paper, we'll get a fuzzy set
with repeated experiments by using Bayesian
inferencef12, 13] that consists of prior probability
distribution, posterior probability distribution, and
likelihood distribution to SOM. The proposed
Bayesian SOM updates parameters of probability
distribution without having the fixed values of
weights on each node of output layer. This
it to create the

strategy  makes possible

membership function by performing repeated

experiments with same data to get different
results. The proposed method doesn’t always
offer same results for the same training data

because it uses a random number from the last

updated  distribution  for  clustering.  The

membership function of fuzzy set is determined

by Bayesian learning[7] based SOM that

computes a posterior by combining prior and

likelihood. @ We  summarized the proposed

algorithm in this paper as following.

Stepl: Initialize
(n: data size, p: the dimension of input vectors)

Normalization of input vectors

X = (X, X,

’ ip) represents the ith input pattern

normal __ (x,,—'u, L XeThp )_

normal
x,. o 0 "o, (x,.l ,...,x,.p

’ .
X"~ NO,D) , (i=1,...n) " likelihood

normal
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1.2 Initialize the weights vectors: Prior of weights
1.2.1 determine the distribution type of J()
JO) s any probability density function(pdf)
w~ f(0)
optionally, 6~ g ((P): 9 is the hyper-parameter
of 0, &() is also pdf

Step2: Determine winner node
(m: feature map dimension)

2.1 Weights sampling from current prior
. normal
2.2 Compute the dist(x"™", w,)

normal

(Euclidean distance of X: and W)

dist(x:“‘"”"’,wj) = ‘/(x,.';"’”"" - wj,)2 +t (x,.':""“' -

(i=le,n | j=1..,m")

2.3 Determine winner node

Wi is winner node if

dist(x,w,) <dist(x,w;) j=1,..m’

that is,

w, = argmin{dist(x,w,)}
J

Step3: Update distribution of weights
3.1 Compute posterior of winner node using Bayes’
rule
3.2 Replace current posterior by new prior
Repeat phase2 and phase3 until given conditions are
satisfied
Stepd: Extract Fuzzy Set for the number of Clusters .
4.1 Repeat experiments until given number

4.1 Determine the membership function of fuzzy set

IV. Experimental Results and Conclusion
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For our experiments, we used Iris plants, Glass
identification, and Abalone data in UCI machine
learning repository[10]. We verified our model
with other clustering methods. The CCVP
measure is good when it is smaller. And the
clustering is good when the s.d.(standard
deviation) is smaller. Because the smaller s.d. of
clustering is the more similar objects of data are.
We used the k of K-means clustering and the
stopping cluster size of hierarchical clustering by

the number of labels of target variable.

Table 1. The evaluation of comparative models

# of CCvP
Data set Methods
clusters mean s.d.
SOM 5 0.017 0.146
Iris K-means 3 0.093 0.583
plants Hierarchical 3 0.121 0.912
Qur model 3 0.002 0.058
SOM 11 0.184 0.364
Glass
K-means 7 0.312 0.986
identific
Hierarchical 7 0.498 1.014
ation
Our model 6 0.105 0.215
SOM 24 2.515 6.311
K-means 29 4.319 11.358
Abalone
Hierarchical 29 5914 12.984
Our model 20 1.313 4.560

Above result showed the CCVP mean and CCVP
s.d. of Bayesian learning SOM is the smallest

among comparative clustering methods.
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