• Title/Summary/Keyword: Hybrid Scheduling Algorithm

Search Result 72, Processing Time 0.024 seconds

Operation Scheduling System for Hull Block Fabrication in Shipbuilding using Genetic Algorithm (유전 알고리즘을 이용한 선각 가공 작업일정계획 시스템의 개발에 관한 연구)

  • Cho, Kyu-Kab;Kim, Young-Goo;Ryu, Kwang-Ryel;Hwang, Jun-Ha;Choi, Hyung-Rim
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.115-128
    • /
    • 1998
  • This paper presents a development of operation scheduling and reactive operation scheduling system for hull fabrication. The methodology for implementing operation scheduling system is HHGA(Hierarchical Hybrid Genetic Algorithm) which exploits both the global perspective of the genetic algorithm and the rapid convergence of the heuristic search for operation scheduling. The methodology for the reactive operation scheduling is the revised HHGA which consists of manual schedule editor for occurrence of exceptional events and the revised scheduling method used in operation scheduling. As the results of experiment, it has been confirmed that HHGA is able to search good operation scheduling within reasonable time, and the revised HHGA is able to search load-balanced reactive operation scheduling with minimum changes of initial operation schedule within short period of time.

  • PDF

Scheduling Algorithm for WDM-PON in SUCCESS Network Architecture (SUCCESS 네트워크 구조에서의 WDM-PON을 위한 스케줄링 알고리즘)

  • Kim, Hyun-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7B
    • /
    • pp.427-432
    • /
    • 2005
  • Emerging high broad band multimedia service with high quality has led to demand for challenge of optical access network and Passive Optical Network is one of the most important technologies for future optical access network. In this paper, we study the scheduling algorithm for WDM-PON in SUCCESS network architecture, a next generation hybrid WDM/TDM optical access network architecture. Due to economic implementation of this architecture, the shared resources efficiently need to be assigned and then we propose the efficient scheduling algorithm based on specific architecture and characters of SUCCESS. We evaluate and analyze the performance in terms of the average packet delay and throughput of the whole system.

Hybrid Genetic Algorithms for Solving Reentrant Flow-Shop Scheduling with Time Windows

  • Chamnanlor, Chettha;Sethanan, Kanchana;Chien, Chen-Fu;Gen, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.306-316
    • /
    • 2013
  • The semiconductor industry has grown rapidly, and subsequently production planning problems have raised many important research issues. The reentrant flow-shop (RFS) scheduling problem with time windows constraint for harddisk devices (HDD) manufacturing is one such problem of the expanded semiconductor industry. The RFS scheduling problem with the objective of minimizing the makespan of jobs is considered. Meeting this objective is directly related to maximizing the system throughput which is the most important of HDD industry requirements. Moreover, most manufacturing systems have to handle the quality of semiconductor material. The time windows constraint in the manufacturing system must then be considered. In this paper, we propose a hybrid genetic algorithm (HGA) for improving chromosomes/offspring by checking and repairing time window constraint and improving offspring by left-shift routines as a local search algorithm to solve effectively the RFS scheduling problem with time windows constraint. Numerical experiments on several problems show that the proposed HGA approach has higher search capability to improve quality of solutions.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

Production Scheduling in Semiconductor Wafer Fabrication Process (반도체 Wafer Fabrication 공정에서의 생산일정계획)

  • Lee, Koon-Hee;Hong, Yu-Shin;Kim, Soo-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.357-369
    • /
    • 1995
  • Wafer fabrication process is the most important and critical process in semiconductor manufacturing. The process is very complicated and hard to establish an efficient schedule due to its complexity. Furthermore, several performance indices such as due dates, throughput, cycle time and workstation utilizations are to be considered simultaneously for an efficient schedule, and some of these indices have negative correlations in performances each other. We develop an efficient heuristic scheduling algorithm; Hybrid Input Control Policy and Hybrid Dispatching Rule. Through numerical experiments, it is shown that the proposed Hybrid Scheduling Algorithm gives better performance compared with existing algorithms.

  • PDF

A Hybrid Genetic Algorithm for Scheduling of the Panel Block Assembly Shop in Shipbuilding (선각 평블록 조립공장 일정계획을 위한 혼합 유전 알고리즘)

  • 하태룡;문치웅;주철민;박주철
    • Korean Management Science Review
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2000
  • This paper describes a scheduling problem of the panel block assembly shop in a shipbuilding industry. Because the shipbuilding is a labor intensive industry the most important consideration in a panel block assembly shop is the workload balancing. which balances man-hour weight and welding length and so on. It should be determined assembly schedule and workstation considering a daily load balancing and a workstation load balancing simultaneously. To solve the problem we develop a hybrid genetic algorithm. Hybrid genetic algorithm proposed in this paper consists of two phases. The first phase uses the heuristic method to find a initial feasible solution which provides a useful information about optimal solution. The second phase proposes the genetic algorithm to derive the optimal solution with the initial population consisting of feasible solutions based on the initial solution. Finally we carried out computational experiments for this load balancing problem which indicate that developed method is effective for finding good solutions.

  • PDF

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

A QoS-aware Scheduling Algorithm for Multiuser Diversity MIMO-OFDM System (다중 사용자 MIMO-OFDM 시스템에서의 QoS 제공을 위한 스케줄링 기법)

  • An Se-Hyun;Yoo Myung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.717-724
    • /
    • 2006
  • In order to maximize the throughput and provide the fairness between users in MIMO-OFDM system, FATM(fairness-aware throughput maximization) scheduling algorithm was proposed. In this paper, a QoS-aware scheduling algorithms for MINO-OFDM system are proposed, each of which is based on FATM. These scheduling algorithms aim to satisfy the different service requirements of various service classes. Three proposed QoS scheduling algorithms called SPQ (Strict Priority Queueing), DCBQ (Delay Constraint Based Queuing), HDCBQ (Hybrid Delay Constraint Based Queuing) are compared through computer simulations. It is shown that HDCBQ algorithm outperforms other algorithms in satisfying different requirements of various service classes.

Scheduling of a Flow Shop with Setup Time (Setup 시간을 고려한 Flow Shop Scheduling)

  • Kang, Mu-Jin;Kim, Byung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.797-802
    • /
    • 2000
  • Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.

  • PDF

A Genetic Algorithm for Scheduling Sequence-Dependant Jobs on Parallel Identical Machines (병렬의 동일기계에서 처리되는 순서의존적인 작업들의 스케쥴링을 위한 유전알고리즘)

  • Lee, Moon-Kyu;Lee, Seung-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.360-368
    • /
    • 1999
  • We consider the problem of scheduling n jobs with sequence-dependent processing times on a set of parallel-identical machines. The processing time of each job consists of a pure processing time and a sequence-dependent setup time. The objective is to maximize the total remaining machine available time which can be used for other tasks. For the problem, a hybrid genetic algorithm is proposed. The algorithm combines a genetic algorithm for global search and a heuristic for local optimization to improve the speed of evolution convergence. The genetic operators are developed such that parallel machines can be handled in an efficient and effective way. For local optimization, the adjacent pairwise interchange method is used. The proposed hybrid genetic algorithm is compared with two heuristics, the nearest setup time method and the maximum penalty method. Computational results for a series of randomly generated problems demonstrate that the proposed algorithm outperforms the two heuristics.

  • PDF