• Title/Summary/Keyword: Hybrid Laminated

Search Result 113, Processing Time 0.031 seconds

Optimum Design for Iso-strain Structure of Hybrid Laminated Composite (하이브리드 적층복합재료에서의 Iso-Strain 구조설계의 최적화)

  • 강선교;이경우;강태진
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • The optimum design of hybrid laminated composites for iso-strain structure has been studied by controling fiber orientations and thicknesses of each layer. Fiber orientations and thicknesses of each layer for iso-strain structure were designed. Combining the laminates of each layer of different reinforcing material, the constitutions of hybrid laminated composite for iso-strain structure were obtained. All these calculations were formed on computer systems, automatically for the hybridization. Using the data of some specific laminated composite such as glass and aramid reinforced composites, the constitutions of hybrid laminated composites for iso-strains structure were designed and verified by lamination theory. The strains of each layer of hybrid laminated composites are calculated and they turned out to be good agreements with the results obtained lamination theory.

  • PDF

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

Optimal design of hybrid laminated composite plates (혼합 적층 복합 재료판의 최적설계)

  • 이영신;이열화;나문수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1391-1407
    • /
    • 1990
  • In this paper, optimization procedures are presented considering the static and dynamic constraints for laminated composite plate and hybrid laminated composite plate subject to concentrated load on center of the plates. Design variables for this problem are ply angle or ply thickness. Deflection, natural frequency and specific damping capacity are considered as constraints. Using a recursive linear programming method, the nonlinear optimization problems are solved. By introducing the design scaling factor, the number of iterations is reduced significantly. Composite plates could be designed optimally combined with FEM analysis under various conditions. In the optimization procedure, verification for both analysis and design of the laminated composite plates are compared with the results of the others. Various design results are presented for the laminated composite plates and hybrid laminated composite plates.

Static Bending Strength Performance of Domestic Wood-Concrete Hybrid Laminated Materials (국내산 목재-콘크리트 복합적층재의 정적 휨 강도성능)

  • Byeon, Jin-Woong;Cho, Young-June;Lee, Je-Ryong;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • In this study, to develop the lattice materials with a low environmental load for restoring the destroyed forest, 7 types of wood-concrete hybrid laminated materials were manufactured with domestic four softwoods, three hardwoods and concrete, and the effects of density of wood species on static bending strength performances were investigated. Bending MOEs of wood-concrete hybrid laminated materials increased with increasing density of wood species on the whole, and the values were higher than that of concrete by hybrid-laminating woods on the concrete. It was found that the measure values of bending MOEs were slightly lower than the calculated values calculated using equivalent cross-section method from MOE of each laminae of hybrid laminated materials and the difference between them was less than 10%. Bending proportional limit stresses of hybrid laminated materials showed 1.2-1.6 times higher than that of concrete by hybrid-laminating. Bending strength (MOR) of hybrid laminated materials increased with the density of wood species. By hybrid-laminating, the MOR of concrete was considerably increased. Therefore, it is considered that wood-concrete hybrid laminated materials can be applied as a materials with a low environmental load and durability for ecological restoration.

Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions

  • Benhenni, Mohammed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Abbes, Fazilay;Li, Yuming;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.535-549
    • /
    • 2019
  • This study aimed to develop a high-order shear deformation theory to predict the free vibration of hybrid cross-ply laminated plates under different boundary conditions. The equations of motion for laminated hybrid rectangular plates are derived and obtained by using Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle-ply laminates are obtained by using Navier's solution. To assess the validity of our method, we used the finite element method. Firstly, the analytical and the numerical implementations were validated for an antisymmetric cross-ply square laminated with available results in the literature. Then, the effects of side-to-thickness ratio, aspect ratio, lamination schemes, and material properties on the fundamental frequencies for different combinations of boundary conditions of hybrid composite plates are investigated. The comparison of the analytical solutions with the corresponding finite element simulations shows the good accuracy of the proposed analytical closed form solution in predicting the fundamental frequencies of hybrid cross-ply laminated plates under different boundary conditions.

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Buckling and Vibration Analysis of Laminated Composite Plate and Hybrid Composite Plate with a Hole. (원공을 갖는 복합적층판 및 혼합적층판의 좌굴 및 진동해석)

  • 구경민;홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.812-815
    • /
    • 2002
  • This paper deals with the buckling and vibration analysis of plate with a hole. We knew that in this paper, as aspect ratio rises in design parameter, the buckling strength and the natural frequency of laminated composite plate decrease and as diameter of hole for width of plate rises, the buckling strength decrease but the natural frequency increase. Also this paper compared the CFRP laminated composit plate with the hybrid composite plate, and proposed that the hybrid composite plate is stronger than the CFRP composite plate.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.