• Title/Summary/Keyword: Hybrid Interconnection

Search Result 37, Processing Time 0.029 seconds

국내 상호접속료 산정방식의 문제점 분석

  • Yang, Won-Seok;Jeong, Ji-Hyeong
    • Proceedings of the Korea Database Society Conference
    • /
    • 2010.06a
    • /
    • pp.181-185
    • /
    • 2010
  • The current method for accessing interconnection charges in Korea, called a hybrid model in this paper, mixes a top-down with a bottom-up LRIC model. The method has given stable charges so far. However, according to the fundamental changes of the market, policy, and network technology in the telecommunications industry, it requires analyzing the validity of the method. We investigate the problems of the top-clown, bottom-up, and hybrid model used in Korea and analyze their effect on regulation policy.

  • PDF

A Design of AXI hybrid on-chip Bus Architecture for the Interconnection of MPSoC (MPSoC 인터커넥션을 위한 AXI 하이브리드 온-칩 버스구조 설계)

  • Lee, Kyung-Ho;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.33-44
    • /
    • 2011
  • In this paper, we presents a hybrid on-chip bus architecture based on the AMBA 3.0 AXI protocol for MPSoC with high performance and low power. Among AXI channels, data channels with a lot of traffic are designed by crossbar-switch architecture for massively parallel processing. On the other hand, addressing and write-response channels having a few of traffic is handled by shared-bus architecture due to the overheads of (areas, interconnection wires and power consumption) reduction. In experiments, the comparisons are carried out in terms of time, space and power domains for the verification of proposed hybrid on-chip bus architecture. For $16{\times}16$ bus configuration, the hybrid on-chip bus architecture has almost similar performance in time domain with respect to crossbar on-chip bus architecture, as the masters's latency is differenced about 9% and the total execution time is only about 4%. Furthermore, the hybrid on-chip bus architecture is very effective on the overhead reduction, such as it reduced about 47% of areas, and about 52% of interconnection wires, as well as about 66% of dynamic power consumption. Thus, the presented hybrid on-chip bus architecture is shown to be very effective for the MPSoC interconnection design aiming at high performance and low power.

Study on the Photoelectric Composite Cable for Hybrid Interconnection Implementation (Hybrid 인터커넥션 구현을 위한 광전 복합케이블 제작에 관한 연구)

  • Kim, Jae-Yeol;You, Kwan-Jong;Park, Ryeok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.138-145
    • /
    • 2017
  • With the increasing use of smart electronic devices, the size of the related I/O interface market is increasing rapidly. Demand is also growing for the continuous increase of data and video signals-such as faster data processing speed and data storage capacity-in the smart electronic device input/output interface market. Currently, the POF hybrid cable used in the smart electronic device input / output interface market cannot transmit over a long distance because the optical loss is too large, and the GOF hybrid cable is both vulnerable to bending and other sudden outside changes, and expensive. Therefore, in this study, the design and fabrication of a GOF hybrid cable and fiber guide were carried out in order to develop a cable which can easily withstand external impact, has low optical losses, and meets the demand for continuous data and video signal increase in the smart electronic device input / output interface market.

Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging (반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향)

  • Eom, Y.S.;Choi, K.S.;Choi, G.M.;Jang, K.S.;Joo, J.H.;Lee, C.M.;Moon, S.H.;Moon, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

Hybrid MIMO Antenna Using Interconnection Tie for Eight-Band Mobile Handsets

  • Lee, Wonhee;Park, Mingil;Son, Taeho
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.185-193
    • /
    • 2015
  • In this paper, a hybrid multiple input multiple output (MIMO) antenna for eight-band mobile handsets is designed and implemented. For the MIMO antenna, two hybrid antennas are laid symmetrically and connected by an interconnection tie, thereby enabling complementary operation. The tie affects both the impedance and radiation characteristics of each antenna. Further, printed circuit board (PCB) embedded type is applied to the antenna design. To verify the results of this study, we designed eight bands-LTE class 12, 13, and 14, CDMA, GSM900, DCS1800, PCS, and WCDMA-and implemented them on a bare board the same size as the real board of a handset. The voltage standing wave ratio (VSWR) is within 3:1 over the entire design band. Antenna isolation is less than -15 dB at the lower band, and -12 dB at the WCDMA band. Envelope correlation coefficient (ECC) of 0.0002-0.05 is obtained for all bands. The average gain and efficiency are measured to range from -4.69 dBi to -2.88 dBi and 33.99% to 51.5% for antenna 1, and -4.74 dBi to -2.97 dBi and 33.45% to 50.49% for antenna 2, respectively.

Realization of the Real-time Hybrid Optical Interconnection Using a Genetic Algorithm (GA 학습기법을 적용한 실시간 복합 광 연결의 실현)

  • Yoon, Jin-Seon;Kim, Nam
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, a grating to apply for the optical interconnection is designed using a Genetic Algorithm(GA) as a robust and an efficient schema. A hybrid optical interconnection system architecture is implemented by the liquid crystal panel as a programmable spatial light modulator. As the result of geometrical transformation to obtain the quantitative data for $3{\times}3$ spot beams at CCD array detector by optical experiment truthfully, the mean of beam intensity as a gray level is 202, the maximum value is 225, the minimum value is 186, and a uniformity is quantitatively $1.93{\times}10^{-1}$ similar to simulation result.

  • PDF

Low-Loss Multimode Waveguides Using Organic-Inorganic Hybrid Materials

  • Yoon, Keun-Byoung
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.290-292
    • /
    • 2004
  • Multimode channel waveguides were fabricated using a direct UV patterning technology from thick films deposited by the one-step dip-coating of an organic/inorganic hybrid material (ORMOCER(equation omitted). The core size of the covered ridge waveguide was 43${\times}$51 $\mu\textrm{m}$$^2$; the waveguides can be readily prepared for multimode applications by direct UV patterning. The waveguides exhibited smooth surface profiles and a low optical loss of 0.07 ㏈/cm at the most important wavelength (850nm) used for optical interconnects.

Transient Modeling of Single-Electron Transistors for Circuit Simulation (회로 시뮬레이션을 위한 단일전자 트랜지스터의 과도전류 모델링)

  • 유윤섭;김상훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.1-12
    • /
    • 2003
  • In this study, a regime where independent treatment of SETs in transient simulations is valid has been identified quantitatively. It is found that as in the steady-state case, each SET can be treated independently even in the transient case when the interconnection capacitance is large enough. However, the value of the load capacitance $C_{L}$of the interconnections for the independent treatment of SETs is approximately 10 times larger than that of the steady state case. A compact SET transient model is developed for transient circuit simulation by SPICE. The developed model is based on a linearized equivalent circuit and the solution of master equation is done by the programming capabilities of the SmartSpice. Exact delineation of several simulation time scales and the physics-based compact model make it possible to accurately simulate hybrid circuits in the time scales down to several tens of pico seconds. The simulation time is also shown to depend on the complexity level of the transient model.l.

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Performance of Hybrid Laser Diodes Consisting of Silicon Slab and InP/InGaAsP Deep-Ridge Waveguides

  • Leem, Young-Ahn;Kim, Ki-Soo;Song, Jung-Ho;Kwon, O-Kyun;Kim, Gyung-Ock
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.339-341
    • /
    • 2010
  • The fundamental transverse mode lasing of a hybrid laser diode is a prerequisite for efficient coupling to a single-mode silicon waveguide, which is necessary for a wavelength-division multiplexing silicon interconnection. We investigate the lasing mode profile for a hybrid laser diode consisting of silicon slab and InP/InGaAsP deep ridge waveguides. When the thickness of the top silicon is 220 nm, the fundamental transverse mode is lasing in spite of the wide waveguide width of $3.7{\mu}m$. The threshold current is 40 mA, and the maximum output power is 5 mW under CW current operation. In the case of a thick top silicon layer (1 ${\mu}m$), the higher modes are lasing. There is no significant difference in the thermal resistance of the two devices.