• Title/Summary/Keyword: Hybrid Intelligent Algorithm

Search Result 190, Processing Time 0.026 seconds

A Novel Approach for the Unit Commitment with Vehicle-to-grid

  • Jin, Lei;Yang, Huan;Zhou, Yuying;Zhao, Rongxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.367-374
    • /
    • 2013
  • The electrical vehicles (EV) with vehicle-to-grid (V2G) capability can be used as loads, energy sources and energy storage in MicroGrid integrated with renewable energy sources. The output power of generators will be reallocated in the considering of V2G. An intelligent unit commitment (UC) with V2G for cost optimization is presented in this paper. A new constraint of UC with V2G is considered to satisfy daily use of EVs. A hybrid optimiza-tion algorithm combined Binary Particle Swarm Optimization (BPSO) with Lagrange Mul-tipliers Method (LMM) is proposed. The difference between results of UC with V2G and UC without V2G is presented.

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

An Improved Intrusion Detection System for SDN using Multi-Stage Optimized Deep Forest Classifier

  • Saritha Reddy, A;Ramasubba Reddy, B;Suresh Babu, A
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.374-386
    • /
    • 2022
  • Nowadays, research in deep learning leveraged automated computing and networking paradigm evidenced rapid contributions in terms of Software Defined Networking (SDN) and its diverse security applications while handling cybercrimes. SDN plays a vital role in sniffing information related to network usage in large-scale data centers that simultaneously support an improved algorithm design for automated detection of network intrusions. Despite its security protocols, SDN is considered contradictory towards DDoS attacks (Distributed Denial of Service). Several research studies developed machine learning-based network intrusion detection systems addressing detection and mitigation of DDoS attacks in SDN-based networks due to dynamic changes in various features and behavioral patterns. Addressing this problem, this research study focuses on effectively designing a multistage hybrid and intelligent deep learning classifier based on modified deep forest classification to detect DDoS attacks in SDN networks. Experimental results depict that the performance accuracy of the proposed classifier is improved when evaluated with standard parameters.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

An Intelligent Framework for Test Case Prioritization Using Evolutionary Algorithm

  • Dobuneh, Mojtaba Raeisi Nejad;Jawawi, Dayang N.A.
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • In a software testing domain, test case prioritization techniques improve the performance of regression testing, and arrange test cases in such a way that maximum available faults be detected in a shorter time. User-sessions and cookies are unique features of web applications that are useful in regression testing because they have precious information about the application state before and after making changes to software code. This approach is in fact a user-session based technique. The user session will collect from the database on the server side, and test cases are released by the small change configuration of a user session data. The main challenges are the effectiveness of Average Percentage Fault Detection rate (APFD) and time constraint in the existing techniques, so in this paper developed an intelligent framework which has three new techniques use to manage and put test cases in group by applying useful criteria for test case prioritization in web application regression testing. In dynamic weighting approach the hybrid criteria which set the initial weight to each criterion determines optimal weight of combination criteria by evolutionary algorithms. The weight of each criterion is based on the effectiveness of finding faults in the application. In this research the priority is given to test cases that are performed based on most common http requests in pages, the length of http request chains, and the dependency of http requests. To verify the new technique some fault has been seeded in subject application, then applying the prioritization criteria on test cases for comparing the effectiveness of APFD rate with existing techniques.

Adaptive Intrusion Detection Algorithm based on Artificial Immune System (인공 면역계를 기반으로 하는 적응형 침입탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2003
  • The trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online, or an offline internet, so it is expected to make a problem more and more. The goal of intrusion detection is to identify unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators in real time. In fact, the general security system based on Internet couldn't cope with the attack properly, if ever. other regular systems have depended on common vaccine softwares to cope with the attack. But in this paper, we will use the positive selection and negative selection mechanism of T-cell, which is the biologically distributed autonomous system, to develop the self/nonself recognition algorithm and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. For making it come true, we will apply AIS to the network environment, which is a computer security system.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Gesture Recognition using Global and Partial Feature Information (전역 및 부분 특징 정보를 이용한 제스처 인식)

  • Lee, Yong-Jae;Lee, Chil-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.759-768
    • /
    • 2005
  • This paper describes an algorithm that can recognize gestures constructing subspace gesture symbols with hybrid feature information. The previous popular methods based on geometric feature and appearance have resulted in ambiguous output in case of recognizing between similar gesture because they use just the Position information of the hands, feet or bodily shape features. However, our proposed method can classify not only recognition of motion but also similar gestures by the partial feature information presenting which parts of body move and the global feature information including 2-dimensional bodily motion. And this method which is a simple and robust recognition algorithm can be applied in various application such surveillance system and intelligent interface systems.