• Title/Summary/Keyword: Hybrid Fiber

Search Result 772, Processing Time 0.026 seconds

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.

Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams (하이브리드 섬유보강재로 보강된 철근콘크리트 보의 휨거동)

  • Yi, Seong-Tae;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • This study was performed to evaluate the flexural behavior of Hybrid fiber sheet (HFC) and Hybrid fiber bar (HFB) strengthened reinforced concrete (RC) beams. According to test results, Hybrid fiber reinforcement strengthened RC beams showed approximately 60 to 200% higher reinforcing effects than that of un-reinforced specimens. In addition, the reinforced beams showed the ideal failure pattern, which is failed presenting the ductile behavior after yielding of the reinforcing bar. More specifically, in the case of HFB reinforced RC beams, the difference with puttying method was not apparent since HFB beams reinforced using the injection of epoxy and bonding of putty showed the similar failure patterns.

Self Diagnosis Monitoring System of Carbon and Glass Hybrid Fiber Materials for Concrete Structures (CFGFRP 복합재료를 이용한 콘크리트 자기진단 모니터링)

  • Park, Seok-Kyun;Kim, Dae-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.359-362
    • /
    • 2005
  • Self diagnosis monitoring system is defined as concrete structural carbon and glass hybrid fiber materials, in response to the change in external disturbance and environments, toward structural safety and serviceability as well as the extension of structural service life. In this study, carbon and glass hybrid fiber materials were investigated fundamentally for the applicability of self diagnosis in smart concrete structural system as embedded functions of sensors.

  • PDF

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

Static Analysis of Continuous Fiber-Reinforced Laminated Beams Based on Hybrid-Mixed Formulation (혼합 정식화를 이용한 섬유 강화 적층보의 변형해석)

  • Kim, J.G.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.47-52
    • /
    • 2011
  • In this study, an accurate 2-noded hybrid-mixed element for continuous fiber-reinforced laminated beams is newly proposed. The present element including the effect of shear deformation is based on Hellinger-Reissner variational principle, and introduces additional consistent node less degrees for displacement field interpolation in order to enhance the numerical performance. The micromechanical and lamination theory are employed in the finite element description to consider the effects of the laminate stacking sequences, material orthotropy, and fiber volume fraction, etc. The element stiffness matrix can be explicitly derived through the stationary condition and static condensation using Mathematica program. Several numerical examples confirm the accuracy of the present hybrid-mixed element and also show in detail the effects of the continuous fiber volume fraction, stacking sequences and boundary condition on the bending behavior of laminated beams.

Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Kim, Yeon-Jik;Yun, Ho-Cheol;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF

Engineering Performance of a Rapid Hardening Hydraulic Binder with Hybrid Fiber

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The fundamental performance of any construction material should cover at least two phases: safety and serviceability. Safety commonly represents adequate strength, while serviceability encompasses the control of cracking and deflections at service loads. With respect to rapid hydraulic binders as a construction material, the above two phases should also be considered. Recent research on rapid cooling ladle furnace slag (RC-LFS) has drawn much attention, particularly given that it shows remarkable rapid hydraulic ability to pulverize to a fineness of $6,300cm^2/g$. This industrial byproduct could contribute to developing the sustainability of the rapidly hardening cementitious material system. This paper aims to expand upon the applicability of an RC-LFS-based binder that is composed of two parts. It also seeks to illustrate the engineering performance of an RC-LFS-based hybrid fiber-reinforced composite and to increase the strength of the RC-LFS-based composite. Each step of this experiment followed ASTM standards. The engineering performance, in both fresh state and hardening state, was tested and discussed in this paper. According to the experimental results for fresh concrete, the air content increased following the addition of polypropylene fiber. For hardened concrete, the toughness and strength improved following the addition of a hybrid fiber. The hybrid fiber mixture, which contains 0.75% of steel fiber and 0.25% of polypropylene fiber, shows even better engineering performance than other mixtures.

Experimental Investigations of Mode I Fracture Toughness of a Hybrid Twill Woven Carbon and Aramid Fabric Composite (하이브리드 능직 탄소-아라미드 섬유 복합재의 모드 I 파괴인성에 대한 실험적 연구)

  • Kwon, Woo Deok;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • Carbon fiber has excellent specific strength, corrosion resistance and heat resistance. And p-Aramid fiber has high toughness and heat resistance and high elasticity, and is used in various fields such as industrial protective materials, bulletproof helmets and vests, as well as industrial fields. However, carbon fiber is relatively expensive, and is susceptible to brittle fracture behavior due to its low fracture strain. On the other hand, the aramid fiber tends to decrease in elastic modulus and strength when applied to the epoxy matrix, but it is inexpensive and has higher elongation and fracture toughness than carbon fiber. Thus the twill hybrid carbonaramid fiber reinforced composite laminate composite was investigated for a delamination fracture toughness under Mode I loading by 2 kinds of MBT and MCC deduction. The specimen was fabricated with 20 hybrid fabric plies. The initial crack was made by inserting the teflon tape in the center plane with a0/W=0.5 length. The results show that SERR(Strain Energy Release Rate) as the critical and stable delamination fracture toughness were 0.09 kJ/㎡, 0.386 kJ/㎡ by MBT deduction, and 0.192 kJ/㎡, 0.67 kJ/㎡ by MCC deduction, respectively.

Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress (열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가)

  • Han, Seung-Hyeon;Kim, Gyu-Yong;Lee, Yae-Chan;Eu, Ha-Min;Park, Jun-Young;Nam, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF

An Experimental Study on the Mechanical Properties of Hybrid Fiber Reinforced Plastic(FRP) Rebar for Concrete Structure (콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 물성에 관한 실험적연구)

  • 배시연;신용욱;한길영;이동기;심재기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.63-66
    • /
    • 2000
  • This paper describes the need for a ductile Fiber Reinforced Plastic(FRP) reinforcement for concrete structures. Using the material hybrid and geometric hybrid, it is demonstrated that the pseudo-ductility characteristic can be generated in FRP rebar. Ductile hybrid FRP bars were successfully fabricated at 4mm and l0mm nominal diameters using an hand lay up method. Tensile specimens from these bars were tested and compared with behavior of FRP rebar and steel bar

  • PDF