References
- Arunachaleswarana, A., Pereiraa, I.M., Dieringaa, H., Huanga, Y., Horta, N., Dhindawb, B.K. and Kainera, K.U. (2007), "Creep behavior of AE42 based hybrid composites", Mater. Sci. Eng. A, 460-461, 268-276. https://doi.org/10.1016/j.msea.2007.01.043
- Bathe, K.J. (1996), Finite Element Procedure, Prentice Hall, Englewood Cliffs, N.J.
- Bilger, N., Auslender, F., Bornert, M., Michel, J.C., Moulinec, H., Suquet, P. and Zaoui, A. (2005), "Effect of a nonuniform distribution of voids on the plastic response of voided materials: A computational and statistical analyses", Int. J. Solids Struct., 42, 517-538. https://doi.org/10.1016/j.ijsolstr.2004.06.048
- Friend, C.M., Horsfall, I. and Burrows, C.L. (1991), "The effect of particulate: Fibre ratio on the properties of short-fibre/particulate hybrid MMC produced by perform infiltration", J. Mater. Sci., 26, 225-231. https://doi.org/10.1007/BF00576056
- Fu, S.Y., Xu, G. and Mai, Y.W. (2002), "On the elastic modulus of hybrid particle/short-fiber/polymer composites", Composites Part B, 33, 291-299. https://doi.org/10.1016/S1359-8368(02)00013-6
- Haj-Ali, R.M. and Pecknold, D.A. (1996), "Hierarchical material models with microstructure for nonlinear analysis of progressive damage in laminated composite structures", Struct. Res. Ser. No. 611, UILU-ENG-96- 2007, Department of Civil Engineering, University of Illinois at Urbana-Champaign.
- Halpin, L.C. and Pagano, N.J. (1969), "The laminate approximation for randomly oriented fiberous composites", J. Compos. Mater., 3, 720. https://doi.org/10.1177/002199836900300416
- Halpin, L.C., Jerine, K. and Whitney, J.M. (1971), "The laminate analogy for 2 and 3 dimensional composite materials", J. Compos. Mater., 5, 36. https://doi.org/10.1177/002199837100500104
- Jiang, M., Jasiuk, I. and Ostoja-Starzewski, M.O. (2002), "Apparent elastic and elastoplastic behavior of periodic composites", Int. J. Solids Struct., 39, 199-212. https://doi.org/10.1016/S0020-7683(01)00145-7
- Kanaun, S.K. and Jeulin, D. (2001), "Elastic properties of hybrid composites by the effective field approach", J. Mech. Phys. Solids, 49, 2339-2367. https://doi.org/10.1016/S0022-5096(01)00047-3
- Kerth, K. and Lin, Y.C. (2003), "Development of finite element model using incremental endochronic theory for temperature sensitive material", Struct. Eng. Mech., 16(2), 115-126. https://doi.org/10.12989/sem.2003.16.2.115
- Khan, A.S. and Huang, S. (1995), Continuum Theory of Plasticity, Wiley-Interscience.
- Kim, J.S. and Muliana, A.H. (2009), "A time-integration method for the viscoelastic-viscoplastic analyses of polymers nad finite element implementation", Int. J. Numer. Mech. Eng., 79, 550-575. https://doi.org/10.1002/nme.2569
- Kim, J.S. and Muliana, A. (2010), "A combined viscoelastic-viscoplastic behavior of particle reinforced composites", Int. J. Solids Struct., 47(5), 580-594. https://doi.org/10.1016/j.ijsolstr.2009.10.019
- Kouznetsova, V., Brekelmans, W.A.M. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comput. Mech., 27, 37-48. https://doi.org/10.1007/s004660000212
- Liu, J., Feng, X., Fryxell, G.E., Wang, L.Q., Kim, A.Y. and Gong, M. (1998), "Hybrid mesoporous materials with functionalized monolayers", Chem. Eng. Technol., 21(1), 97-100. https://doi.org/10.1002/(SICI)1521-4125(199801)21:1<97::AID-CEAT97>3.0.CO;2-W
- Lee, K.L. and Chang, K.H. (2004), "Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension", Struct. Eng. Mech., 18(5), 627-644. https://doi.org/10.12989/sem.2004.18.5.627
- Lee, S.S. and Sohn, Y.S. (1994), "Viscoelastic analysis of residual stresses in a unidirectional laminate", Struct. Eng. Mech., 2(4), 383-393. https://doi.org/10.12989/sem.1994.2.4.383
- Mondal, A.K. and Kumar, S. (2008), "Impression creep behavior of magnesium alloy-based hybrid composites in the longitudinal direction", Compos. Sci. Technol., 68, 3251-3258. https://doi.org/10.1016/j.compscitech.2008.08.007
- Muliana, A.H. and Kim, J.S. (2007), "Concurrent micromechanical model for nonlinear viscoelatic behaviors of particle reinforced composites", Int. J. Solids Struct., 44, 6891-6913. https://doi.org/10.1016/j.ijsolstr.2007.03.016
- Muliana, A.H. and Kim, J.S. (2009), "A two-scale homogenization framework for the effective thermal conductivity of laminated composites", Acta Mechanica, DOI: 10.1007/s00707-009-0264-2 (in press)
- Oh, K.H. and Han, K.S. (2007), "Short-fiber/particle hybrid reinforcement: Effects on fracture toughness and fatigue crack growth of metal matrix composites", Compos. Sci. Technol., 67, 1719-1726. https://doi.org/10.1016/j.compscitech.2006.06.020
- Schapery, R.A. (1969), "On the characterization of nonlinear viscoelastic materials", Polym. Eng. Sci., 9(4), 295-310. https://doi.org/10.1002/pen.760090410
- Valanis, K.C. (1971), "A theory of viscoplasticity without a yield surface, Part 1, general theory", Arch. Mech., 23, 517-533.
- Yilmazer, U. (1992), "Tensile, flexural and impact properties of a thermoplastic matrix reinforced by glass fiber and glass bead hybrids", Compos. Sci. Technol., 44, 119-125. https://doi.org/10.1016/0266-3538(92)90104-B
- Young, R.J. and Maxwell, D.L. (1986), "The deformation of hybrid-particulate composite", J. Mater. Sci., 21, 380-388. https://doi.org/10.1007/BF01145498
- Zebarjad, S.M., Bagheri, R. and Lazzeri, A. (2001), "Hybrid PP-GF-EP. Part 1. Deformation mechanism", Plast. Rubber Compos., 30, 370. https://doi.org/10.1179/146580101101541750
Cited by
- Effective viscoelastic properties of short-fiber reinforced composites vol.100, 2016, https://doi.org/10.1016/j.ijengsci.2015.10.008
- Biaxial creep property of ethylene tetrafluoroethylene (ETFE) foil vol.54, pp.5, 2015, https://doi.org/10.12989/sem.2015.54.5.973
- Mechanical properties of Al/Al2O3and Al/B4C composites vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.263
- A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability vol.38, pp.4, 2010, https://doi.org/10.12989/sem.2011.38.4.503
- Effects of nano-sized silica particles on the off-axis creep performance of unidirectional fiber-reinforced polymer hybrid composites vol.55, pp.12, 2010, https://doi.org/10.1177/0021998320973742