• 제목/요약/키워드: Hybrid Feature selection

검색결과 46건 처리시간 0.024초

Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델 (Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing)

  • 민병준;유지훈;신동규;신동일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권2호
    • /
    • pp.65-72
    • /
    • 2021
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며, 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델인 HFS-DNN을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 기존 분류 모델들과 성능 비교를 수행한다. 본 연구에서 제안된 Hybrid Feature Selection 알고리즘이 학습 모델의 성능을 왜곡 시키지 않는 것을 확인하였으며, 불균형을 해소한 학습 모델들간 실험에서 본 논문에서 제안한 학습 모델이 가장 좋은 성능을 보였다.

특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교 (Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons)

  • 오일석;이진선;문병로
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권8호
    • /
    • pp.1113-1120
    • /
    • 2004
  • 이 논문은 특징 선택을 위한 새로운 혼합형 유전 알고리즘을 제안한다. 탐색을 미세 조정하기 위한 지역 연산을 고안하였고, 이들 연산을 유전 알고리즘에 삽입하였다. 연산의 미세 조정 강도를 조절할 수 있는 매개 변수를 설정하였으며, 이 변수에 따른 효과를 측정하였다. 다양한 표준 데이타 집합에 대해 실험한 결과, 제안한 혼합형 유전 알고리즘이 단순 유전 알고리즘과 순차 탐색 알고리즘에 비해 우수함을 확인하였다.

KNHNAES (2013~2015) 에 기반한 대형 특징 공간 데이터집 혼합형 효율적인 특징 선택 모델 (A Hybrid Efficient Feature Selection Model for High Dimensional Data Set based on KNHNAES (2013~2015))

  • 권태일;이정곤;박현우;류광선;김의탁;박명호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.739-747
    • /
    • 2018
  • 고차원 데이터에서는 데이터마이닝 기법 중에서 특징 선택은 매우 중요한 과정이 되었다. 그러나 전통적인 단일 특징 선택방법은 더 이상 효율적인 특징선택 기법으로 적합하지 않을 수 있다. 본 논문에서 우리는 고차원 데이터에 대한 효율적인 특징선택을 위하여 혼합형 특징선택 기법을 제안하였다. 본 논문에서는 KNHANES 데이터에 제안한 혼합형 특징선택기법을 적용하여 분류한 결과 기존의 분류기법을 적용한 모델보다 5% 이상의 정확도가 향상되었다.

Hybrid Feature Selection Method Based on a Naïve Bayes Algorithm that Enhances the Learning Speed while Maintaining a Similar Error Rate in Cyber ISR

  • Shin, GyeongIl;Yooun, Hosang;Shin, DongIl;Shin, DongKyoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5685-5700
    • /
    • 2018
  • Cyber intelligence, surveillance, and reconnaissance (ISR) has become more important than traditional military ISR. An agent used in cyber ISR resides in an enemy's networks and continually collects valuable information. Thus, this agent should be able to determine what is, and is not, useful in a short amount of time. Moreover, the agent should maintain a classification rate that is high enough to select useful data from the enemy's network. Traditional feature selection algorithms cannot comply with these requirements. Consequently, in this paper, we propose an effective hybrid feature selection method derived from the filter and wrapper methods. We illustrate the design of the proposed model and the experimental results of the performance comparison between the proposed model and the existing model.

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.

Hybrid Case-based Reasoning and Genetic Algorithms Approach for Customer Classification

  • Kim Kyoung-jae;Ahn Hyunchul
    • Journal of information and communication convergence engineering
    • /
    • 제3권4호
    • /
    • pp.209-212
    • /
    • 2005
  • This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.

Hybrid Feature Selection과 Data Balancing을 통한 네트워크 침입 탐지 모델 (Network intrusion detection Model through Hybrid Feature Selection and Data Balancing)

  • 민병준;신동규;신동일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.526-529
    • /
    • 2020
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 이러한 문제를 해결하기 위해서 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있지만 기계학습을 침입 탐지에 이용하기 위해서는 두 가지 문제에 직면한다. 첫 번째는 실시간 탐지를 위한 학습과 연관된 중요 특징들을 선별하는 문제이며 두 번째는 학습에 사용되는 데이터의 불균형 문제로, 기계학습 알고리즘들은 데이터에 의존적이기에 이러한 문제는 치명적이다. 본 논문에서는 위 제시된 문제들을 해결하기 위해서 Hybrid Feature Selection과 Data Balancing을 통한 심층 신경망 기반의 네트워크 침입 탐지 모델을 제안한다. NSL-KDD 데이터 셋을 통해 학습을 진행하였으며, 평가를 위해 Accuracy, Precision, Recall, F1 Score 지표를 사용하였다. 본 논문에서 제안된 모델은 Random Forest 및 기본 심층 신경망 모델과 비교해 F1 Score를 기준으로 7~9%의 성능 향상을 이루었다.

유전알고리즘을 이용한 최적 k-최근접이웃 분류기 (Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm)

  • 박종선;허균
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.17-27
    • /
    • 2010
  • 분류분석에 사용되는 k-최근접이웃 분류기에 유전알고리즘을 적용하여 의미 있는 변수들과 이들에 대한 가중치 그리고 적절한 k를 동시에 선택하는 알고리즘을 제시하였다. 다양한 실제 자료에 대하여 기존의 여러 방법들과 교차타당성 방법을 통하여 비교한 결과 효과적인 것으로 나타났다.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

눈 검출에서의 픽셀 선택을 이용한 신뢰 척도 (A New Confidence Measure for Eye Detection Using Pixel Selection)

  • 이용걸;최상일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권7호
    • /
    • pp.291-296
    • /
    • 2015
  • 본 논문에서는, 눈 검출에서의 픽셀 선택 방법을 이용한 편향 판별 분석(BDA) 기반의 신뢰 척도를 제안하고 이를 이용하여 hybrid 눈 검출기를 설계한다. 이를 위해 눈 조각 영상에서 먼저 판별 분석에 유용한 픽셀들을 선택하여 부분 영상을 만들고, 부분 영상에 BDA를 적용하여 신뢰 척도를 위한 특징 공간을 구성한다. Hybrid 눈 검출기를 구성하는 기본 검출기로는 상호 보완적인 특성을 가진 HFED와 MFED를 사용하였다. 주어진 영상에 대해, 기본 검출기들에 의해 생성된 눈 좌표를 가지고 생성한 눈 조각 영상의 부분 영상들을 BDA 특징공간에 투영하여 positive 샘플의 평균과의 거리를 측정함으로써 그 정확성을 측정하고, 기본 검출기의 결과들 중에서 신뢰도가 높은 결과를 최종 눈 검출 결과로 사용한다. 다양한 얼굴 데이터베이스들에 대한 실험 결과에서, 제안한 방법은 검출된 눈 좌표의 정확도 측면에서 뿐만 아니라 검출된 눈 좌표를 이용한 얼굴 인식 성능에서도 다른 방법들보다 우수한 결과를 나타내었다.