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Abstract

This article performs a detailed data scrutiny on a chronic kidney disease

(CKD) dataset to select efficient instances and relevant features. Data rele-

vancy is investigated using feature extraction, hybrid outlier detection, and

handling of missing values. Data instances that do not influence the target are

removed using data envelopment analysis to enable reduction of rows. Col-

umn reduction is achieved by ranking the attributes through feature selection

methodologies, namely, extra-trees classifier, recursive feature elimination,

chi-squared test, analysis of variance, and mutual information. These method-

ologies are ranked via Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) using weight optimization to identify the optimal features

for model building from the CKD dataset to facilitate better prediction while

diagnosing the severity of the disease. An efficient hybrid ensemble and novel

similarity-based classifiers are built using the pruned dataset, and the results

are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest

neighbors, and support vector machines. The hybrid ensemble classifier yields

a better prediction accuracy of 98.31% for the features selected by extra tree

classifier (ETC), which is ranked as the best by TOPSIS.
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1 | INTRODUCTION

Machine learning models are developed to make accurate
predictions, and such outcomes are highly mandated in
medical data analytics. Such models are expected to
exploit all the instances and features of a dataset to facili-
tate an unambiguous contribution toward making appro-
priate decisions [1]. Data have been identified as the
most important part of machine learning, and the core
concept of data science investigates data purity to yield
better predictions. Data represent certain characteristics,

and these can be used to extract meaningful insights to
provide feasible solutions for real-world problem through
analytics. The quality of data samples makes a significant
contribution to a successful training process and
improves the performance of the predictive models. Data
contemplation utilizes scientific methods to extract rele-
vant structured data using advanced data analysis for
decision-making.

In general, the relevancy scrutiny of data instances
and attributes has been seen to improve the process of
model building. Unambiguous and independent

Received: 17 January 2022 Revised: 4 May 2022 Accepted: 23 May 2022

DOI: 10.4218/etrij.2022-0018

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2022 ETRI

448 ETRI Journal. 2023;45(3):448–461.wileyonlinelibrary.com/journal/etrij

https://orcid.org/0000-0002-3209-6858
mailto:sebaantony.phd201002@iiitkottayam.ac.in
mailto:sebaantony.phd201002@iiitkottayam.ac.in
https://doi.org/10.4218/etrij.2022-0018
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2


attributes are known to incorporate precise values that
make contributions to accurate prediction, which is
deemed the ideal outcome. For instance, a dataset with
ambiguous attributes could affect the process of model
building during the training phase. Relevancy contem-
plation facilitates the perception of the redundant as
well as irrelevant instances along with features for
elimination, and it further identifies relevant entities
for selection.

The chronic kidney disease (CKD) dataset, available
at the University of California Irvine (UCI) repository, is
considered for the present investigation, as it provides a
realistic dataset that consists of both numerical and cate-
gorical variables [2]. This dataset features a number of
challenging issues for researchers in model building,
which include nonnormal variables, outliers, missing
values, and redundant and irrelevant instances, along
with class imbalance that necessitate detailed data con-
templation regarding predictive analytics. This raw CKD
dataset must be handled properly, as there are a few
redundant and irrelevant features that may affect the per-
formance of learning models. Further, certain instances
in a dataset may be completely ambiguous, which could
lead to false predictions.

Relevancy contemplation helps validate the quality of
each attribute as well as its instances, and it yields readily
available data for building effective machine learning
models for predictive analytics. In general, feature selec-
tion algorithms deal with correlating the attributes and
estimating the contribution level of each attribute toward
the target variable. Features whose contribution tends
toward accurate prediction of the target variable are
extracted from the datasets to create an effective classifi-
cation model. In predictive analytics, feature selection
algorithms have been used to rank the attributes of data-
sets that are under consideration for various application
domains [3]. The feature selection algorithms considered
in this work are supervised learning algorithms used to
identify irrelevant features in the CKD dataset; hence,
they reduce the number of columns in a dataset. Each
algorithm evaluates the attributes, assigns importance
factors, and accordingly ranks and sorts the attributes.
The optimum number of attributes arranged in their
order of relevancy is considered inputs to various classi-
fier models for the effective prediction of the severity
of CKD.

In this work, data envelopment analysis (DEA) is
conducted to identify ambiguous instances to eliminate
them from the CKD dataset. Once such instances are
eliminated, the optimal number of relevant features
from the reduced dataset is observed with various
supervised feature selection algorithms. Specifically,
DEA is used for row reduction, while feature selection

algorithms are used for column reduction [4, 5]. The
supervised feature selection techniques considered in
this work are ranked using Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS)
with weight optimization for further analytics; that is,
the best feature selection strategy is identified using
TOPSIS. The outcome of TOPSIS is validated through
various classifier models to accurately predict the
severity of the CKD. The classifier models are built
using the reduced set of data instances given by DEA
and the set of features given by each supervised fea-
ture selection algorithm. The observed results before
and after detailed data contemplation and in the order
of merit of various feature selection algorithms are
compared and reported.

2 | STATE OF THE ART

Recently, there has been a profound degree of growth in
data due to its continuous production at an ever-
increasing rate in different dimensions. Likewise, data
mining has become a less tangible but more challenging
task. Data must be properly analyzed and tuned into the
context of the given problem to make appropriate deci-
sions and to obtain desired results. High-dimensional
data deteriorate the performance of data mining method-
ologies and machine learning algorithms. Hence, much
research has been undertaken to consider dimensionality
reduction as a primary concern and exclude irrelevant,
redundant, and noisy data.

In medical datasets, relevancy contemplation has
been identified to be essential for simplifying the models
by reducing the instances (rows) and features (columns)
and avoid the curse of dimensionality and reduce train-
ing times. The raw data used for model building are anal-
ogous to crude oil, which requires further refinement
before it can be used in specific applications. The out-
comes of any classifier depend on the quality and rele-
vance of the data for effective decision-making. In the
context of clinical trials, statistical concepts provide
guidelines for data analysis, whereas exploratory data
analysis provides a wide range of strategies to derive
appropriate matrices and detect anomalies or define
ranges of typical values to correct input errors and
impute missing values [6]. Friedrich and oters [7]
reported the relevance of statistical methodology in the
context of artificial intelligence (AI) development and
discussed the contributions of statistics to the field of
AI. This relates to methodological development, plan-
ning, and design in research studies; the assessment of
data quality; data collection; and the assessment of uncer-
tainties in the results [7]. Further, modeling concepts,
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such as bias and accuracy, are also observed for evalua-
tion in medical data analysis.

Meanwhile, Onan and Koruko�glu [8] insisted on
the importance of feature selection algorithms in the
development of accurate and efficient ensemble classi-
fiers, not only in improving prediction accuracy but
also in reducing learning times by considering the
huge amount of data available for sentiment classifica-
tion analysis. In another work, Onan [9] presented a
hybrid intelligent classifier for breast cancer diagnosis
with the proper identification of feature subsets and
the selection of appropriate data instances. Further,
Onan [10] examined the predictive performance of
various ensemble classifiers in web page classification
and presented a comparative analysis of four feature
selection algorithms and classification models. Later,
Onan [11] proposed a hybrid ensemble pruning
approach to overcome the high-dimensionality prob-
lems with an identification of appropriate parametric
values to improve the performance of Latent
Dirichlet allocation (LDA). Here, a swarm-optimized
LDA with ensemble pruning algorithm has been intro-
duced, and its performance is tested using five biomed-
ical text benchmarks.

Rostami and others [12] examined various swarm
intelligence-based feature selection methods, mainly
focused on the curse of dimensionality, and evaluated
their pros and cons for general categorization. Mishra
and Sharma [13] analyzed the performance of various
dimensionality reduction techniques in a comparative
context and showed that the LDA is more informative
and accurate than the others. Musheer and others [16]
analyzed various methods for the pre-processing of high-
dimensional data, especially gene expression microarrays,
and organized dimension reduction methods with respect
to their characteristics and evaluation criteria [14]. Fur-
ther, an artificial bee colony-based feature selection
approach (2017, 2019) is presented to eradicate the chal-
lenges associated with independent component analysis
as applied to microarray data and found the best subset
of genes using the extracted features [15,16]. Independent
component analysis has been used to reduce the size of
the data; to optimize the reduced feature subsets, an
artificial bee colony-based wrapper approach is used. The
use of this hybrid approach is compared to the results
obtained from the minimum redundancy maximum rele-
vance (mRMR) method combined with the artificial bee
colony algorithm for naïve Bayes (NB) classifier and with
other similar biology-inspired algorithms, such as the
genetic algorithm and particle swarm optimization.
Zebari and oters [17] broadly analyzed a range of feature
selection and extraction methodologies with a key
focus on dimensionality reduction, and they identified

one most accurate classifier, which featured reduced
computational time.

In medical datasets, values of variables that go
beyond the normal range are required for the prediction
of presence or absence of a disease. However, the pres-
ence of outliers and missing values [18] can have a nega-
tive impact while building classifiers [19,20]. Points in
data instances that are irrelevant for medical data analy-
sis are handled efficiently, and instances with outliers are
removed in the classifier model building process. Over
the past decade, many methods of outlier detection have
been reported and successfully applied across a wide
range of fields, including the observation of health, credit
card fraud, and detections of intrusion. Xu and others
[21] have extensively studied the outlier detection
methods in high-dimensional data and produced a com-
plete understanding of outlier detection techniques. Sev-
eral experiments were conducted on statistical, distance,
density, clustering, deviation, and subspace-based outlier
detection methods with various performance measures,
including precision, average precision, AUC, rank power,
and correlation coefficient, for the purpose of building an
efficient classifier.

In medical data analytics, each data instance in a
dataset is considered a decision-making unit (DMU).
Missing values in DMUs have been effectively handled
by many researchers to create accurate predictive models
using machine learning algorithms. Tshering and oters
[22] proposed a sequential method to identify types of
missing data, including missing completely at random
(MCAR), missing at random (MAR), and missing not at
random (MNAR), for an incomplete dataset. Here,
MCAR is detected using the mean and the covariance
between the observed and unobserved values. Wilk’s test
is performed to test the null hypothesis and alternate
hypotheses for the occurrence of MCAR. MAR is identi-
fied by estimating the probability of missingness in
observed values and not in unobserved values, and the
coefficients of logistic regression identify the missingness
as MAR. MNAR uses the probability of missingness in
both observed and unobserved values, and it is confirmed
through a latent variable in a dataset. The authors pro-
posed a simulation model using a Gross National Happi-
ness dataset to validate the sequential method for each of
MCAR, MAR, and MNAR data.

In this study, we focus on data instances that do
not contribute much to the target attributes, as the
major concern of most of the published works has been
dimensionality reduction. In recent works, it was
reported that the DEA is used for many application
domains to identify efficient records from the datasets,
including healthcare management systems [23]. How-
ever, it is hard to identify publications that report exact
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identifications of efficient instances from the training
datasets used for building accurate classifiers, especially
in medical data analytics.

DEA is a nonparametric and linear programming
technique used to estimate the efficiency of each data
instance by observing its relative performance [24]. DEA
identifies instances that require imputation as infinite
efficient records and thus facilitates the handling of miss-
ing values in those instances. Although DEA does not
identify outliers, it provides an efficient means of identi-
fying inefficient instances in medical datasets. Thus, it
enables row reduction, while feature selection algorithms
facilitate column reduction by identifying irrelevant fea-
tures [25,26]. Moreover, it is well known that certain data
instances contribute less to a target, which leads to a
lower classifier accuracy. The performance measures of
the classifiers as well as the feature selection algorithms
are assessed for their accuracy in their prediction, not
only after imputation and removal of outliers but also fol-
lowing the removal of inefficient instances. The models
developed so far in medical data analytics focus only on
the enhancement of feature selection algorithms and
integrated classifiers to improve prediction accuracy.
Hence, the major concern of most research work is col-
umn reduction rather than row reduction.

Wibawa and others [27] developed a machine learn-
ing model using ensemble learning and feature selection
to enhance the quality of CKD diagnosis. The
correlation-based feature selection (CFS) algorithm and
AdaBoost have been used herein for ensemble learning
to improve the detection of the presence of CKD. The K-
nearest neighbor (KNN) algorithm, NB, and support vec-
tor machine (SVM) are assumed as base classifiers. Using
them, it was proven that the best result was achieved
through the combination of KNN classifier with CFS and
AdaBoost, producing a 0.981 accuracy rate, a 0.980 recall
rate, and a 0.980 f-measure rate. Grissa and others [28]
proposed a workflow that describes the general feature
selection process, using appropriate methodologies for
predictive biomarker discovery. Their study focused on
the machine learning methods, namely, SVM-recursive
feature elimination (RFE), random forest (RF), and RF-
RFE, as well as on univariate statistical analysis of vari-
ance (ANOVA), and a comparative study was performed
on an original metabolomics dataset with reduced sub-
sets. The relevant features were extracted from the com-
bination of these different methods using importance
scores. From the results obtained, the RF-Gini method
combined with ANOVA was identified as the best one for
feature selection for the early prediction of biomarkers. A
classifier model was built using linear logistic regression
on this reduced dataset to identify the top five attributes,
and it was validated in terms of prediction accuracy.

Qin and others [29] proposed an integrated classi-
fier model that combines LOG and RF by perceptron
over the CKD dataset to improve prediction accuracy.
Initially, the dataset was tuned using KNN imputation,
where the numerical missing values are filled by the
median, and the categorical missing values are filled
with the mode of K-samples. Further, LOG, RF, SVM,
KNN, NB, and feedforward neural network classifiers
are evaluated using the complete and tuned CKD data-
set for optimal feature selection. The experimental
results show that the integrated RF model with
Signum activation function has good performance for
the CKD diagnosis.

Chen and others [1] utilized three datasets with a
higher number of variables, namely, a bank marketing
database, a car evaluation database, and human activity
recognition using smartphones to perform an analysis of
appropriate feature selection. Here, the accuracy and per-
formance of classifiers such as RF, SVM, KNN, and LDA
are evaluated, wherein RF emerges as an efficient and
accurate algorithm in terms of accuracy. Moreover, all of
the classifiers are trained across raw datasets, and such
datasets are subjected to the feature selection methods
RFE and Boruta.

The importance of feature selection algorithms in
model building has been studied for decades, but only a
few works have ordered or ranked the algorithms by con-
sidering their efficiency. The TOPSIS with weight optimi-
zation has been proposed in this work to rank the feature
selection algorithms. TOPSIS is a multi-criterion decision
analysis method for ranking different alternatives based
on various criteria. More recently, multiple criteria
decision-making (MCDM) methods have been used to
rank and evaluate the performance of the features. TOP-
SIS is unique relative to MCDM methods because it
depends on logical thinking, which is based on the simul-
taneous evaluation of the nearest distance from the best
alternative (positive ideal solution) and the longest dis-
tance from the worst alternative (negative ideal solution).
TOPSIS also incorporates a straightforward approach,
which is suitable for cases with a larger or smaller num-
bers of criteria, and it is appropriate to use with qualita-
tive or quantitative data. TOPSIS has been used to obtain
an overall performance value for each alternative to
make a final decision. Esfandiari and Rizvandi [30] have
adopted the TOPSIS technique to rank business develop-
ment strategies, including critical success factors analysis,
business systems planning, Porter’s forces model, SWOT
analysis, value chain analysis, and MIN. The major chal-
lenge of TOPSIS implementation in medical data analyt-
ics is the selection of weighted vectors, which should be
framed in consultation with medical practitioners in
respective fields.
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In this work, DEA is carried out on the CKD dataset
to identify efficient instances. Before the removal of inef-
ficient instances by DEA according to their relative effi-
ciency, the dataset was appropriately imputed, followed
by the removal of instances consisting of outliers. The
remainder of this article includes the following sections
to address all of the objectives, as follows: (i) Section 3
reveals the proposed methodology, including data clean-
ing, identification of inefficient instances, selection of
relevant features, and ranking of feature selection
algorithms, (ii) Section 4 validates the ranked feature
selection algorithms using prominent classifiers, and
(iii) Section 5 summarizes the results and discussion.

3 | PROPOSED METHODOLOGY

In the medical data analytics, the major concern is
dimensionality reduction, but the work addressed herein
is focused on data instances, which do not contribute
much to the target attribute. To build efficient classifiers,
the data instances that are more inclined toward the tar-
get attribute must be identified for accurate prediction of
different stages of CKD. The most relevant features
should be selected from the set of feature selection algo-
rithms, which are ranked based on their order of effi-
ciency. Relevant data instances are identified by DEA,
while relevant features are estimated by their contribu-
tion toward the target variable. The feature selection
algorithms, which are used to grade the features and
identify the best among them, are ranked using weight-
optimized TOPSIS. The ranked feature selection algo-
rithms are validated through classifier models used to
produce accurate prediction of the severity of the disease.
Rows are reduced by removing inefficient data instances
through DEA, whereas the columns are reduced by
selecting relevant features in the feature selection
algorithms.

3.1 | Data collection

The CKD dataset for this present work is obtained
from UCI Machine Learning Repository. It has
400 instances and 24 independent variables, with
11 quantitative and 13 qualitative variables to predict
the disease as ckd or notckd, which is a binomial
response. The dataset consists of clinical test records of
real cases that are considered as data instances in
the collection for CKD predictive analytics. The quanti-
tative independent variables are continuous and dis-
crete, while the qualitative variables are nominal and
ordinal.

3.2 | Feature extraction for multinomial
response

Extracting relevant features enhances the analytics pro-
cess to identify new patterns or to change the nature of
the responsiveness of the existing target variable. The
new feature, that is, estimated glomerular filtration rate
(eGFR), is extracted using the patient’s demographic
information and clinical reports to predict the presence
of CKD and its stages as per the guidelines of Kidney Dis-
ease Improving Global Outcomes (KDIGO) [31]. eGFR is
estimated using 1, which is known as the modification of
diet in renal disease equation. eGFR is extracted with the
help of the attributes “age” and “sc” and populated
demographic attributes “race” and “gender.”

eGFR¼ 175⨯ scð Þ�1:154 ⨯ ageð Þ�0:203 ⨯gender_condition⨯ race_condition;

ð1Þ

where gender_condition¼ 0:742, if female

1, if male

�
and

race_condition¼ 1:212, if black

1, if others

�
.The “class” of each

instance of the enhanced CKD dataset is labeled using
one of the values from the multinomial responsive set
{stages 1–5} against the binomial response {notckd, ckd},
as per KDIGO guidelines. The enhanced CKD dataset
consists of 28 attributes, with the “class” attribute chan-
ged from binomial to multinomial target; hence, there
are 27 independent variables. In the enhanced CKD data-
set, the distribution of data instances among various
stages is represented as follows: stage 1, 25.25%; stage
2, 19.5%; stage 3, 22.75%; stage 4, 14.75%; and stage
5, 17.75%.

3.3 | Data pre-processing

Data pre-processing is the preliminary process in data
analysis. Data cleaning is carried out by handling outliers
and missing data, taking account of the distribution,
types of variable, and types of missingness. The enhanced
CKD dataset has missing values in 242 instances, and the
numerical independent variables are highly skewed. The
skewness may be caused by missing values or the pres-
ence of outliers; hence, such issues are addressed. An
enhanced dataset with additional extracted features is
used for data tuning following a stratified split. Splitting
the enhanced CKD dataset randomly into training and
test datasets leads to an imbalanced distribution of clas-
ses (i.e., CKD stages), which could affect the performance
of models for the minority classes [32,33]. Therefore, the
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dataset was split in a stratified way (in the ratio of 70:30)
to maintain an equal distribution of classes. The training
dataset (70%) and the test dataset (30%) were pre-
processed separately to prevent data leakage. If this is not
done, the prediction accuracy in the production environ-
ment is reduced, as the information outside of the train-
ing dataset might have been used for building the model.
Therefore, the fine-tuned training dataset is used by the
hybrid ensemble, and similarity-based and probabilistic
classifiers are adopted to learn, and the pre-processed test
dataset is utilized to validate the learned models.

3.4 | Outlier detection

The main objective of outlier detection is to extract the
outliers of all numeric variables, as the ordinal variables
in the CKD dataset do not contribute to the outliers. A
hybrid approach is introduced to handle the outliers pre-
sent in the dataset. The interquartile range (IQR) and
mean are integrated using the skewness of the attributes
to handle the outliers. The third standard deviation
(STD) from mean of each numerical attribute (Z-score) is
estimated and integrated with the boxplot using the IQR
to detect outliers from the CKD dataset. The data
instances with variables beyond their upper and lower
threshold ranges of values are identified as outliers and
removed.

All far points are not treated as outliers, as their pres-
ence is highly useful for accurately predicting the disease,
so it is recommended to exclude only the extreme far
points. In the statistical analysis, the boxplot (IQR)
detects 138 records, that is, 34.5% in the CKD dataset as
outliers, and the Z-score (the third STD from the mean)
detects 41 records, that is, 10.25% as outliers, and the pro-
posed hybrid method detects 1% of records, that is,
4 records, as outliers.

3.5 | Handling missing values

Missing values are commonly attributed to human error.
Missingness takes three forms. MAR is visualized
through the scatterplot by showing the relationship
between two variables and is imputed by the mean-
median-mode. MNAR is imputed by the machine learn-
ing model KNN. Then, MCAR is detected using a list-
wise method and imputed by the mean-median-mode. If
the variables’ correlation coefficient is 1, they are
grouped as MNAR, as they exhibit the same missing pat-
tern. If their correlation coefficient is 0, they are grouped
as MCAR, as they do not exhibit the same missing

pattern. Lastly, if it is less than 1, they are grouped as
MAR, as a relationship exists among the variables.

The sets of variables identified to have missing
values due to of MNAR are {pcc, ba}, {sod, pot}, {htn,
dm, cad}, {appet, pe, ane}, and {gfr, race, gender}, and
the set of variables with missing values due to MCAR
is {rbc, pc, bgr, age, bp}, while the sets due to MAR
are {wc, rc}, {hemo, pcv}, {bu, sc}, and {al, su, sg}. The
MNAR type of missing values are imputed by KNN
with K = 5. The MCAR and MAR types of missing
values are imputed using the mean-median-mode.
After data cleaning, the inefficient data instances are
identified, and the features that influence the predic-
tion are recognized as building the classifiers for
validation.

3.6 | Data envelopment analysis

DEA identifies ambiguous instances for elimination.
Each data instance is a DMU, and its efficiency is mea-
sured using DEA. The role of DEA in data analytics is
not only intended for dimensionality reduction but also
for the validation of data cleaning; that is, it confirms the
instances handled to set right the missing values during
data pre-processing. The importance of relevancy exami-
nation in data analytics is proliferated by investigating
the contributions of both independent variables and of
data instances, with respect to the target attribute and
the model’s efficiency.

A stratified split of the entire dataset yields 281 data
instances in the training dataset and 119 in the test data-
set. After the split, the numbers of instances for the stages
in the training dataset are about 71, 55, 64, 40, and 51.
The numbers of data instances in the training dataset are
277 after the detection of outliers (as discussed in
Section 3.4), leaving 71, 55, 64, 40, and 47 instances in
the different stages; that is, there are no cases of outliers
in the instances for stages 1–4.

Imputation is carried over to handle the missing
values in these 277 data instances (Section 3.5). Further,
nine data instances are identified as being inefficient, as
stated by Algorithm 1. Hence, 268 data instances from
the training dataset are marked as efficient instances,
and they are used for feature selection and model build-
ing. After inconsistent data instances were removed from
the training dataset by DEA, the number of instances for
stages 1–5 is computed as 69, 52, 61, 39, and 47, respec-
tively. From these results, it can be observed that DEA
does not remove any instance of stage 5 once the outliers
are handled properly. As DEA only handles numerical
data, the categorical variables in the training dataset
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are converted into numeric quantities through label
encoding.

3.6.1 | Relevancy analysis of CKD dataset
using DEA—Insightful observations

The DMUs with the lowest input and highest outputs are
considered as efficient units. The DEA algorithm is
implemented using the R programming language to iden-
tify data instances with missing values with infinite effi-
ciency. Of the 400 data points, 242 data instances have
missing values, identified as infinitely efficient DMUs,

with a relative efficiency of less than 100% for 106 data
instances. The identified inefficient DMUs are made effi-
cient through the proportional reduction of their inputs,
while the production of their outputs is held constant.
The insights obtained through DEA in the CKD dataset
to identify the efficient data instances are given in
Table 1. The CKD dataset is subjected to DEA before
imputation, but only 13%, that is, 52 data instances, were
identified as efficient instances.

The dataset is split in a stratified manner, and
281 data instances of the training dataset are subjected
to DEA before and after imputation. DEA identifies
214 and 9 data instances as inefficient before and after
imputation, respectively. After handling the outliers
from the training dataset, 4 instances are removed,
and 277 data instances are subjected to DEA. Herein,
209 instances are identified as inefficient before impu-
tation, and 9 instances are observed to be inefficient
after imputation. Hence, DEA yields 268 instances
from the training dataset for further processing of fea-
ture selection and model building. After imputation
and before outlier removal from the training dataset,
the data instances with outliers are not considered
inefficient instances by DEA. This is so because the
data instances with outliers possess distant data points
at the maximum end, which then increases relative
efficiency.

3.7 | Ranking of feature selection
algorithms for medical data analytics

Removing redundant and irrelevant features during
model building with machine learning algorithms has
equal importance to the selection of relevant features. It
is focused on deriving the best strategy to select an appro-
priate feature selection algorithm, which can be suitably
adopted for any medical dataset in place of finding the
best features with accuracy. While analyzing the CKD
dataset, ranking among the most frequently used feature
selection methods is performed using TOPSIS, such as
extra-trees classifier, analysis of variance, RFE, chi-
squared test, and MI, which is enhanced with weight
optimization.

3.8 | TOPSIS-based ranking of feature
selection algorithms

The stated feature selection methods are ranked using
TOPSIS for 281, 277, and 268 data instances of the train-
ing dataset, that is, (i) the entire set of data instances
(training dataset, 281 instances), (ii) the set of data
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instances in the training dataset after removal of outliers
(277), and (iii) the set of data instances in the training
dataset after removal of inefficient data instances by DEA
(268). In each case, the ranks of all of the attributes
derived from each feature selection algorithm are input-
ted to the proposed TOPSIS model by way of constructing
the evaluation matrices. The evaluation matrix is con-
structed using the inputs from 268 data instances, as
shown in Table 2. While each feature selection algorithm
ranks the attributes, TOPSIS ranks the algorithm itself.
The aim is to measure its performance (by estimating the
t score in TOPSIS) of each feature selection algorithm,
before and after the handling of outliers and the removal
of inefficient instances by DEA. It has been proven that
the t-score values of the top-ranked feature selection algo-
rithms are high, only after the data have been completely
pruned.

The feature selection algorithms are evaluated using
all of the attributes in which the eGFR is the most impor-
tant criterion and the attributes bacteria (ba), gender,
race, and coronary artery disease (cad) are observed to
have the least importance. The ranking of feature selec-
tion algorithms is evaluated using the TOPSIS score
(t score), which is based on the similarity to the worst
alternative. The step-by-step procedure for the TOPSIS-
based ranking, with enhanced weight optimization using

the CKD training dataset D with v (=27) variables and
N data instances (=281, 277, and 268 records) and
m (=5) feature selection algorithms with ranked vari-
ables as input is depicted in the form of a flow chart in
Figure 1.

The ranks of the attributes given in the evaluation
matrices are normalized for all cases. The weight vector
in TOPSIS is generally assigned by experts based on
the problem domain, and in the case of CKD dataset,
the expert’s opinion is that no clinical factor can be
given as a weight for the cause of the disease. There-
fore, the degree to which each attribute fits into the
normal distribution as estimated by Shapiro–Wilk test
is taken in place of a weight, and these factors are nor-
malized. Weighted normalized decision matrices are
generated, and the minimum and maximum value of
each variable in its column is estimated. Further, the
Euclidean distance between the target alternative and
the best/worst alternative for all cases is calculated.
Each algorithm ranks features according to the esti-
mated scores and treats the category of each feature as
a cost. Hence, the minimum and maximum of each
attribute are considered as the best and worst alterna-
tives, respectively.

The best feature selection algorithm is identified by
computing the similarity and its closeness to the worst

TAB L E 1 Descriptive statistics of DEA on CKD dataset

Sr.
No. Data instances category

No. of data
instances

No. of instances with
infinite efficiency

No. of inefficient
instances

No. of efficient
instances

1 Raw CKD dataset 400 242 348 52

2 70% raw training dataset 281 172 214 67

3 70% training dataset with imputation 281 0 9 272

4 70% training dataset with outliers
handled

277 169 209 68

5 70% training dataset with imputation
and outliers handled

277 0 9 268

TAB L E 2 Evaluation matrix with ranking of each attribute (268 data instances)

Algorithms cad 1 htn 2 hemo 3 bu 4 sc 5 … al 26 egfr 27

ETC 25 9 15 26 27 … 16 1

ANOVA 15 10 13 16 20 … 25 1

RFE 24 10 16 22 26 … 25 2

Chi2 15 10 13 16 20 … 25 1

MI 25 7 13 26 23 … 19 1
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alternative (t score). The t-score values of each feature
selection algorithm by considering 281, 277, and 268 data
instances are listed in Table 3.

The feature selection algorithm extra-trees classifier is
ranked highly by the weight-optimized TOPSIS method,
with the t scores of 0.6564, 0.6371, and 0.7045 while con-
sidering 268, 277, and 281 data instances, respectively.
Based on the estimated t scores, the feature selection
algorithms are ranked for all cases and are presented in
Table 4 in their order of merit.

4 | VALIDATION

The feature selection algorithms such as extra tree classi-
fier (ETC), MI, ANOVA, RFE, and chi-squared test rank
the attributes of the CKD dataset based on their rele-
vancy. The top 10 attributes in their order of merit are
identified by the feature selection algorithms, which are
more relevant for the target variable to facilitate the accu-
rate prediction analysis, as listed in Table 5.

ETC is ranked at the top, and the best features
selected are gfr, sc, bu, hemo, gender, age, sod, bgr, htn,
and bp. The best features identified by each feature selec-
tion algorithm are validated for their truth using the
hybrid ensemble and similarity-based classifiers and fur-
ther compared with classifiers such as random forest,
AdaBoost, NB, KNN, and SVM.

The 10 top-ranked relevant features, extracted in the
order of their merit by the feature selection algorithm,
are given as inputs to build up the models. To estimate
the prediction accuracy relative to the actual extracted
target value in the test dataset, built-up models are used.
To validate the ranked feature selection algorithms pre-
cisely for all cases and accurately predict the severity of
the disease, two new classifier models are developed. The
first model groups multiple classifiers to improve

F I GURE 1 Ranking of feature selection algorithms using

TOPSIS

TABL E 3 T score for each feature selection algorithm

Feature selection algorithm

Data instances

268 277 281

ETC 0.6564 0.6371 0.7045

MI 0.6191 0.5733 0.6844

ANOVA 0.5533 0.5638 0.5919

RFE 0.5345 0.5368 0.4118

Chi2 0.5212 0.5139 0.5794

TABL E 4 Ranking of feature selection algorithms

Data instances Ordered feature selection algorithms

281 ETC > MI > ANOVA > Chi2 > RFE

277 ETC > MI > ANOVA > RFE > Chi2

268 ETC > MI > ANOVA > RFE > Chi2
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prediction accuracy with proper assignment of weights
via a voting process (hybrid ensemble classifier). In this
model, a hybrid strategy is adopted by integrating bag-
ging (random forest) and boosting (AdaBoost) techniques
through hard voting classifiers for the appropriate predic-
tion of the CKD stage with tenfold cross-validation to
classify new data instances correctly by reducing bias and
variance [34, 35].

The second built-up model (weighted decision
matrix classifier) is a knowledge-based system that uses
historically similar cases to interpret new unseen data
points. In this model, the data instances are segmented
into independent decision matrices, and each segment
has its own mean and distribution along with a
weighted DMU. The reduced feature set used by this
classifier is based only on the predictors’ coefficients,
and the variability exhibited by them is not captured.
Each weighted DMU estimates the decision by calcu-
lating the sum of product of normalized weight of
each decision variable and the difference between the
test data and the predictors’ mean of decision matrix.
The kth weighted DMU, which yields the minimum
value, is the actual predictor of the severity of the
disease.

The feature selection algorithms which are ranked
by weight-optimized TOPSIS are validated through the
above built-up models for accurate prediction of sever-
ity of CKD. The performance matrices of accuracy, pre-
cision, recall, and F1-score are compared with
probabilistic NB classifier, decision tree-based random
forest, and AdaBoost with KNN and SVM classifiers.
The accuracy validation of the ranked feature selection

TAB L E 5 Relevant attributes for prediction analysis (268 data

instances)

Feature selection
algorithm

Top 10 attributes in the order of
relevance

ETC gfr, sc, bu, hemo, gender, age, sod,
bgr, htn, bp

MI gfr, sc, bu, hemo, pcv, rc, htn, sod,
pot, bgr

ANOVA gfr, sc, bu, hemo, htn, pcv, rc, sod,
dm, age

RFE sc, gfr, age, bp, pcv, sod, al, hemo, rc,
htn

Chi2 gfr, bu, wc, bgr, sc, age, pcv, al, bp,
htn

TAB L E 6 Validation of feature selection algorithms

Feature selection
algorithm

Accuracy (%)

Integrated ensemble
classifier

WDM
classifier

Random
forest

Ada
boost

Naïve
Bayes KNN SVM

(a) 281 data instances

ETC 98.31 94.61 97.4 96.6 82.35 75.63 88.23

MI 97.47 93.94 94.9 96.6 85.71 84.87 89.91

ANOVA 97.47 92.93 94.1 96.6 81.51 86.5 92.43

RFE 97.47 95.28 94.95 93.2 86.55 95.79 95.79

Chi2 97.47 92.26 95.79 96.6 84.87 33.61 87.39

(b) 277 data instances

ETC 98.31 92.26 96.63 94.11 83.19 78.15 83.19

MI 98.31 86.71 94.11 89.91 83.19 77.31 90.75

ANOVA 98.31 89.16 94.95 86.55 84.03 32.77 83.19

RFE 96.63 93.44 94.95 90.75 85.71 86.55 81.51

Chi2 98.31 91.54 95.79 82.35 84.03 32.77 83.19

(c) 268 data instances

ETC 98.31 93.94 94.95 97.47 82.35 78.15 82.35

MI 98.31 93.93 95.79 97.47 83.19 78.9 89.07

ANOVA 98.31 93.60 94.95 95.79 84.03 84.03 89.91

RFE 97.47 94.61 94.95 96.63 85.71 86.55 85.71

Chi2 97.47 91.93 95.79 96.63 84.87 33.61 87.39
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algorithms for all cases, taking into account 281, 277,
and 268 data instances, is given in Table 6 (a–c)
respectively. The other quality parameters of precision,
recall, and F1-score are displayed in Figures 2–4,
respectively.

It can be observed that the top-ranked 10 relevant
attributes extracted from the extra-trees classifier yield
better test accuracy, that is, a consistent rate of 98.31%
in all cases, while given as input to the integrated

ensemble classifier. When the integrated ensemble
model is built after the removal of outliers (with
277 instances) and inefficient instances according to
DEA (268 instances) by adopting the feature selection
algorithms MI and ANOVA, it achieves the same test
accuracy, that is, 98.31%. The precision, recall, and
F1-score measures are high for the features given by
ETC, MI, and ANOVA. Comparing the results presented
in Table 6 (a–c), it is strongly recommended to utilize

F I GURE 2 (A) Precision—268 data instances; (B) precision—
277 data instances; (C) precision—281 data instances

F I GURE 3 (A) Recall—268 data instances; (B) recall—271

data instances; (C) recall—281 data instances
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the feature selection algorithms ETC, MI, and ANOVA
in the same order. Further, the hybrid ensemble, WDM,
RF, and AdaBoost classifiers, are preferred to the NB,
KNN, and SVM classifiers to accurately predict the
severity of the disease.

5 | CONCLUSIONS

The raw CKD dataset has been considered for analysis,
and the statistical insights of the attributes with their

importance for envisaging the CKD are presented. The
feature eGFR is extracted to predict the severity of the
disease. The outliers are detected using deep insightful
observations through statistical analysis after the
implementation of a new hybrid model with Z score
and IQR. The issue of data leakage is addressed by
pre-processing the training and test datasets separately.
The enhanced dataset is then split into training and
test datasets in a stratified manner in a 70:30 ratio to
balance the class distribution. The impact of DEA on
the complete training dataset before and after imputa-
tion and the removal of outliers are analyzed, and the
CKD dataset is then perfectly tuned. A set of five
supervised feature selection algorithms are ranked by
TOPSIS, which is enhanced with weight optimization;
then, the relevant features are selected by taking
into account all of the cases for model building. The
best feature selection algorithm is identified by com-
puting the similarity and its closeness to the worst
alternative and the TOPSIS scores (t scores) of the
feature selection algorithms in the order of merit, as
follows:

ETC,0:6564ð Þ, MI,0:6191ð Þ, ANOVA; 0:5533ð Þ,f
RFE,0:5345ð Þ, Chi2; 0:5212ð Þg:

A hybrid classifier is designed for the prediction of
the severity of CKD by integrating boosting and bag-
ging techniques through the voting classifier. The
WDM classifier is built by considering the instance sim-
ilarities and relationships among the variables. The
ranked feature selection algorithms are validated
through effective classifier models, which include
hybrid ensemble classifier and WDM classifier toward
accurate prediction of the severity of the CKD. The fea-
ture selection algorithms ETC, MI, and ANOVA have
been determined to outperform in all cases in terms of
accuracy; using hybrid ensemble classifier and with
respect to WDM classifier, the RFE algorithm is noted
to perform well.
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