• 제목/요약/키워드: Hybrid Excavator

검색결과 16건 처리시간 0.021초

작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발 (Development of Hybrid Excavator for Regeneration of Boom Potential Energy)

  • 윤종일;안경관;딩광졍;강종민;김재홍
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

하이브리드 굴삭기의 에너지 관리 제어에 관한 연구 (A Study on the Energy Management Control of Hybrid Excavator)

  • 유봉수;황철민;조중선
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1304-1312
    • /
    • 2012
  • According to the successful development of hybrid vehicle, hybridization of construction equipments like excavator, wheel loader, and backhoe etc., is gaining increasing attention. However, hybridization of excavator and commercial vehicle is very different. Therefore a specialized energy management control algorithm for excavator should be developed. In this paper, hybridization of excavators is investigated and a new energy management control algorithm is proposed. Four control parameters, i.e., lower baseline, upper baseline, idling generation speed, and idling generation torque, are newly introduced and a new operating principle using those four control parameters is proposed. The use of Genetic Algorithm for the optimization of the four control parameters from the view point of minimization of fuel consumption for standard excavating operation is suggested. In order to verify the proposed algorithm, dedicated simulation program of hybrid excavator was developed. The proposed algorithm is applied to a specific hydraulic excavator and 20.7% improvement of fuel consumption is achieved.

Review of Energy Saving Technology of Hybrid Construction Machine

  • Yu, YingXiao;Jeong, Eunjin;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.91-100
    • /
    • 2018
  • This study focuses on the energy saving of construction machinery, especially excavators and wheel loaders coming on a backdrop of energy shortage and environment pollution. Due to the problem of the low energy efficiency and the pollution of conventional hydraulic excavators, hybrid hydraulic excavators were developed to solve this challenge. Firstly, this paper discusses the different configurations of the hybrid hydraulic excavator and recent research trend of hybrid hydraulic excavator is reviewed. Secondly, the productions and research of the construction machine companies were analyzed and finally, the future challenges of hybrid technology to the hydraulic excavator were discussed.

하이브리드 굴삭기용 엔진의 효율 향상 방안에 관한 연구 (Study on the Improvement Methods of Engine Efficiency in Hybrid Excavator)

  • 박민제;민경덕
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.392-400
    • /
    • 2016
  • In this paper, a study based on engine operating conditions versus hybrid excavator engines was conducted about the engine performance and fuel consumption via the 1-D engine simulation model. First of all, engine operating points with performance and emission were determined by driving patterns. The 1-D HFEM(High Frequency Engine Model) was developed for deep insight into engine combustion and the energy conversion phenomena. In accordance with changing operating points, especially High Idle and Rated output conditions, engine parameters and systems such as turbocharger(Waste Gate Turbocharger and Variable Geometry Turbocharger) injection strategies and EGR(Exhaust Gas Recirculation) should be considered. Therefore, various configurations and parametric analysis with optimization methods in hybrid excavator were simulated and optimized by NLPQL(Non-linear Programming by Quadratic Lagrangian algorithm) in 1-D HFEM. As a result, the fuel consumption with the developed hybrid electric excavator engine could be significantly decreased and bsfc(Brake Specific Fuel Consumption) was also reduced about 5 % to 7 % without any performance degradation.

하이브리드 굴삭기용 선회감속기의 가속수명시험에 관한 연구 (Study on Accelerated Life Testing of Swing Reduction Gear Box for Hybrid Excavator)

  • 박종원;최병오;김경근
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1407-1413
    • /
    • 2013
  • 하이브리드 굴삭기는 기존 굴삭기와 달리 선회구동계에 유압모터를 대신하여 선회전동기를 사용하고 있다. 하이브리드 굴삭기의 신뢰성을 평가하고 보증하기 위해서는 기계와 전기적인 고장모드가 조합되어 고려되어야 한다. 특히, 하이브리드 굴삭기용 선회감속기는 가혹한 실외환경에서 운용되므로 시작품에 대한 현장작동조건을 고려한 가속수명시험이 수행되어야 한다. 본 연구에서는 선회구동계 중선회감속기에 대한 가속수명시험 기법의 개발을 위하여 FMMA, FMAECA, FTA 및 QFD와 같은 정성적 신뢰성기법을 활용하였고, 개발된 가속조건에 의한 수명시험결과를 유분석 기법 등을 활용 분석하여 평가대상 시료가 목표 신뢰도를 만족함을 확인하였다.

연료전지 시스템을 적용한 하이브리드 굴삭기 해석 모델 개발 (Development of Simulation Model for PEMFC Hybrid Excavator)

  • 이세영
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.16-22
    • /
    • 2019
  • Due to the rise in energy consumption and natural resource prices, the demand to improve energy efficiency in the construction machine has been highlighted. Even though many researchers have contributed to the development of the technology, CO2 gas emissions of heavy machinery remains high. One of the most significant problems of the novel excavator with internal combustion engines is the emission of harmful gas. To reduce emissions in the construction machine, it is necessary to replace the internal combustion engines with the alternative one. To overcome those problems, this paper focuses on the adoption of PEMFC hybrid engine for the excavator system. An internal combustion engine is replaced by new structures with fuel cell, battery and ultra capacitor. The proposed system has been designed and modeled using Simcenter Amesim software and compared with the conventional one through simulation results.

유압식 굴삭기의 고효율 화에 관한 새로운 접근 (A New Approach to the High Efficiency of Hydraulic Excavator)

  • 이용범
    • 드라이브 ㆍ 컨트롤
    • /
    • 제11권4호
    • /
    • pp.39-45
    • /
    • 2014
  • With recent oil price increases, the fuel efficiency of hydraulic excavators has become a serious issue. Researchers have considered weight lightening by high pressurization in order to improve the efficiency of the excavator and pump controlled actuation (PCA) and to reduce pressure loss of hybrid and valves using mechanical inertia. However, high pressurization is not very effective because the excavator operates at a low speed; a hybrid is inefficient because little accumulated inertial energy is accumulated; and PCA is ineffective because control precision and responsibility are low. In this study, a method to minimize air and gas in hydraulic oil has been presented as a simple and new way to increase hydraulic efficiency.

Design, Modeling and Analysis of a PEM Fuel Cell Excavator with Supercapacitor/Battery Hybrid Power Source

  • Dang, Tri Dung;Do, Tri Cuong;Truong, Hoai Vu Anh;Ho, Cong Minh;Dao, Hoang Vu;Xiao, Yu Ying;Jeong, EunJin;Ahn, Kyoung Kwan
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.45-53
    • /
    • 2019
  • The objective of this study was to design and model the PEM fuel cell excavator with supercapacitor/battery hybrid power source to increase efficiency as well as eliminate greenhouse gas emission. With this configuration, the system can get rid of the internal combustion engine, which has a low efficiency and high emission. For the analysis and simulation, the governing equations of the PEM system, the supercapacitor and battery were derived. These simulations were performed in MATLAB/Simulink environment. The hydraulic modeling of the excavator was also presented, and its model implemented in AMESim and studied. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software. The simulation results were presented to show the performance of the system.

복합형 하이브리드 굴삭기를 위한 동력전달계 제어기법 연구 (Development of Power Management Strategies for a Compound Hybrid Excavator)

  • 김학구;최재웅;유승진;이경수
    • 대한기계학회논문집A
    • /
    • 제35권12호
    • /
    • pp.1537-1542
    • /
    • 2011
  • 본 논문은 복합형 하이브리드 굴삭기를 위한 동력전달계 제어기법에 대하여 기술하였다. 하이브리드 굴삭기는 기존 굴삭기의 동력전달계를 하이브리드화 하여 연비향상 및 배출가스 저감을 목표로 개발되고 있다. 특히 복합형 하이브리드 굴삭기는 유압시스템의 일부를 전기시스템으로 대체하여 낮은 유압효율로 인한 에너지 손실을 줄일 수 있도록 구성되어 있다. 해당 굴삭기의 하이브리드 동력 제어기는 동력전달계의 동력 흐름을 관리하여 굴삭기의 연비를 향상 시키고, 슈퍼 커패시터의 충전량을 적절한 범위에서 유지하며, 기존 굴삭기에 준하는 성능을 유지하여야 한다. 이를 위하여 본 논문에서는 슈퍼 캐패시터의 충전량 기반의 서모스탯(Thermostat)형 제어기와 실시간 최적해를 이용한 ECMS 제어기를 설계하였으며 시뮬레이션을 통하여 그 성능을 검증하였다. 시뮬레이션 결과, 하이브리드 굴삭기의 연비가 대략 20% 이상 향상될 것으로 기대되며, 특히 등가 연료 개념을 이용한ECMS 제어기의 성능이 서모스탯(Thermostat)형 제어기에 비해 연비 및 슈퍼 커패시터 충전량 관리 측면에서 보다 향상된 것을 확인하였다.